acid metabolites
Recently Published Documents


TOTAL DOCUMENTS

1238
(FIVE YEARS 131)

H-INDEX

71
(FIVE YEARS 7)

2022 ◽  
Vol 20 (2) ◽  
pp. 389-401
Author(s):  
Jiaqi Yuan ◽  
Yunting Wang ◽  
Shengquan Mi ◽  
Jiayu Zhang ◽  
Yaxuan Sun

Purpose: To determine the metabolism of caffeic acid in rats. Methods: Sprague-Dawley rats were intragastrically administered caffeic acid in saline suspension, and biological samples collected. After sample pretreatment by solid phase extraction, ultra-high performance liquid chromatography combined with quadrupole-time of flight mass spectrometry system (UHPLC-Q-TOF-MS/MS) was established to rapidly screen and characterize caffeic acid metabolites in rats. Waters HSS T3 UPLC chromatographic column (2.1 mm × 100 mm, 1.7 μm) was applied for the gradient elution with aqueous solution of formic acid (A)-acetonitrile (B). Mass spectral data for the biological samples in electrospray positive and negative ion modes were collected and analyzed by SCIEX OS 1.3 workstation. Results: Based on their precise molecular weights and multistage mass spectrometry cleavage information, caffeic acid and 21 metabolites in vivo were identified. The results demonstrate that the biotransformation of caffeic acid in vivo was mainly achieved via hydrogenation, hydroxylation, methylation, sulfonation, glucuronidation, acetylation, and composite reactions. Conclusion: The metabolites and metabolic pathways of caffeic acid in rats have been rapidly elucidated, and its potential pharmacodynamics forms have been clarified. This provides a valuable and meaningful reference for the study of caffeic acid metabolites, biological activities, and its medicinal material basis in vivo.


2021 ◽  
Vol 16 ◽  
Author(s):  
Kenji Sato

Oral administration of food protein hydrolysate and naturally occurring peptides exert beneficial effects beyond conventional nutritional functions by supplying amino acids for protein synthesis. These peptides are referred to as food-derived bioactive peptides. The coronavirus disease 2019 (COVID-19) is caused by sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some host and viral proteins are involved in the entry of SARS-CoV-2 into cells and their replication. Peptides with specific sequences can interact with these proteins and have potential prophylactic and therapeutic activities against COVID-19. However, it is difficult to deliver food-derived peptides to target organs without degradation by exopeptidases in the body. Alternatively, food-derived peptides and amino acid metabolites have been suggested to decrease risk factors of COVID-19 by modulating the renin-angiotensin system, the innate immune system, and the antioxidant system. This mini-review is based on in vivo responses to food-derived peptides and aims to introduce potential targets for these peptides in decreasing the risk and severity of COVID-19. 


2021 ◽  
Author(s):  
Giorgia De Gioannis ◽  
Alessandro Dell'Era ◽  
Aldo Muntoni ◽  
Mauro Pasquali ◽  
Alessandra Polettini ◽  
...  

Abstract This study investigated the performance of a novel integrated bio-electrochemical system for synergistic hydrogen production from a process combining a dark fermentation reactor and a galvanic cell. The operating principle of the system is based on the electrochemical conversion of protons released upon dissociation of the acid metabolites of the biological process and is mediated by the electron flow from the galvanic cell, coupling biochemical and electrochemical hydrogen production. Accordingly, the galvanic compartment also generates electricity. Four different experimental setups were designed to provide a preliminary assessment of the integrated bio-electrochemical process and identify the optimal configuration for further tests. Subsequently, dark fermentation of cheese whey was implemented both in a stand-alone biochemical reactor and in the integrated bio-electrochemical process. The integrated system achieved a hydrogen yield in the range 75.5 – 78.8 N LH2/kg TOC, showing a 3 times improvement over the biochemical process.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 828
Author(s):  
Lee M. Margolis ◽  
J Philip Karl ◽  
Marques A. Wilson ◽  
Julie L. Coleman ◽  
Claire C. Whitney ◽  
...  

This study used global metabolomics to identify metabolic factors that might contribute to muscle anabolic resistance, which develops when aerobic exercise is initiated with low muscle glycogen using global metabolomics. Eleven men completed this randomized, crossover study, completing two cycle ergometry glycogen depletion trials, followed by 24 h of isocaloric refeeding to elicit low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate 1.0 g/kg fat) glycogen. Participants then performed 80 min of cycling (64 ± 3% VO2 peak) while ingesting 146 g carbohydrate. Serum was collected before glycogen depletion under resting and fasted conditions (BASELINE), and before (PRE) and after (POST) exercise. Changes in metabolite profiles were calculated by subtracting BASELINE from PRE and POST within LOW and AD. There were greater increases (p < 0.05, Q < 0.10) in 64% of branched-chain amino acids (BCAA) metabolites and 69% of acyl-carnitine metabolites in LOW compared to AD. Urea and 3-methylhistidine had greater increases (p < 0.05, Q < 0.10) in LOW compared to AD. Changes in metabolomics profiles indicate a greater reliance on BCAA catabolism for substrate oxidation when exercise is initiated with low glycogen stores. These findings provide a mechanistic explanation for anabolic resistance associated with low muscle glycogen, and suggest that exogenous BCAA requirements to optimize muscle recovery are likely greater than current recommendations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jocelyn R. Grunwell ◽  
Milad G. Rad ◽  
Susan T. Stephenson ◽  
Ahmad F. Mohammad ◽  
Cydney Opolka ◽  
...  

AbstractHierarchal clustering of amino acid metabolites may identify a metabolic signature in children with pediatric acute hypoxemic respiratory failure. Seventy-four immunocompetent children, 41 (55.4%) with pediatric acute respiratory distress syndrome (PARDS), who were between 2 days to 18 years of age and within 72 h of intubation for acute hypoxemic respiratory failure, were enrolled. We used hierarchal clustering and partial least squares-discriminant analysis to profile the tracheal aspirate airway fluid using quantitative LC–MS/MS to explore clusters of metabolites that correlated with acute hypoxemia severity and ventilator-free days. Three clusters of children that differed by severity of hypoxemia and ventilator-free days were identified. Quantitative pathway enrichment analysis showed that cysteine and methionine metabolism, selenocompound metabolism, glycine, serine and threonine metabolism, arginine biosynthesis, and valine, leucine, and isoleucine biosynthesis were the top five enriched, impactful pathways. We identified three clusters of amino acid metabolites found in the airway fluid of intubated children important to acute hypoxemia severity that correlated with ventilator-free days < 21 days. Further studies are needed to validate our findings and to test our models.


2021 ◽  
Vol 9 (12) ◽  
pp. 2430
Author(s):  
Eden Ephraim ◽  
Dennis E. Jewell

Age-related changes in the gut microbiota and metabolites are associated with the increased risk of detrimental conditions also seen with age. This study evaluated whether a test food with potential anti-aging benefits results in favorable changes in plasma and fecal metabolites and the fecal microbiota in senior cats. Forty healthy domestic cats aged 8.3–13.5 years were fed a washout food for 30 days, then control or test food for 30 days. After another 30-day washout, cats were switched to the other study food for 30 days. Assessment of plasma and fecal metabolites showed lower levels of metabolites associated with detrimental processes (e.g., uremic toxins) and higher levels of metabolites associated with beneficial processes (e.g., tocopherols) after cats consumed the test food compared with the control food. A shift toward proteolysis with the control food is supported by higher levels of amino acid metabolites and lower levels of carbohydrate metabolites. Operational taxonomic units of greater abundance with the test food positively correlated with carbohydrate and nicotinic acid metabolites, and negatively correlated with uremic toxins, amino acid metabolism, secondary bile salts, and branched-chain fatty acids. Taken together, the test food appears to result in greater levels of metabolites and microbiota associated with a healthier state.


2021 ◽  
pp. 146906672110579
Author(s):  
Evren C. Eroglu ◽  
Sule Tunug ◽  
Omer Faruk Geckil ◽  
Umran Kucukgoz Gulec ◽  
Mehmet Ali Vardar ◽  
...  

This study aims to determine ovarian cancer (OC) patients with platinum resistance for alternative treatment protocols by using metabolomic methodologies. Urine and serum samples of platinum-resistant and platinum-sensitive OC were analyzed using GC-MS. After data processing of GC-MS raw data, multivariate analyses were performed to interpret complex data for biologically meaningful information and to identify the biomarkers that cause differences between two groups. The biomarkers were verified after univariate, multivariate, and ROC analysis. Finally, metabolomic pathways related to group separations were specified. The results of biomarker analysis showed that 3,4-dihydroxyphenylacetic acid, 4-hydroxybutyric acid, L-threonine, D- mannose, and sorbitol metabolites were potential biomarkers in urine samples. In serum samples, L-arginine, linoleic acid, L-glutamine, and hypoxanthine were identified as important biomarkers. R2Y, Q2, AUC, sensitivity and specificity values of platinum-resistant and sensitive OC patients’ urine and serum samples were 0.85, 0.545, 0.844, 91.30%, 81.08 and 0.570, 0.206, 0.743, 77.78%, 74.28%, respectively. In metabolic pathway analysis of urine samples, tyrosine metabolism and fructose and mannose metabolism were found to be statistically significant (p < 0.05) for the discrimination of the two groups. While 3,4-dihydroxyphenylacetic acid, L-tyrosine, and fumaric acid metabolites were effective in tyrosine metabolism. D-sorbitol and D-mannose metabolites were significantly important in fructose and mannose metabolism. However, seven metabolomic pathways were significant (p < 0.05) in serum samples. In terms of p-value, L-glutamine in the nitrogen metabolic pathway from the first three pathways; L-glutamine and pyroglutamic acid metabolites in D-glutamine and D-glutamate metabolism. In the arginine and proline metabolic pathway, L-arginine, L-proline, and L-ornithine metabolites differed significantly between the two groups.


2021 ◽  
pp. 1-29
Author(s):  
Cara L. Frankenfeld ◽  
Gertraud Maskarinec ◽  
Adrian A. Franke

ABSTRACT Urinary O-desmethylangolensin (ODMA) concentrations provide a functional gut microbiome marker of dietary isoflavone daidzein metabolism to ODMA. Individuals who do not have gut microbial environments that produce ODMA have less favorable cardiometabolic and cancer risk profiles. Urinary metabolomics profiles were evaluated in relation to ODMA metabotypes within and between individuals over time. Secondary analysis of data was conducted from the BEAN2 trial, which was a cross-over study of premenopausal women consuming six months on a high- and a low-soy diet, each separated by a 1-month washout period. In all of the 672 samples in the study, 66 of the 84 women had the same ODMA metabotype at seven or all eight time points. Two or four urine samples per woman were selected based on temporal metabotypes in order to compare within and across individuals. Metabolomics assays for primary metabolism and biogenic amines were conducted in 60 urine samples from 20 women. Partial least-squares discriminant analysis was used to compare metabolomics profiles. For the same ODMA metabotype across different time points, no profile differences were detected. For changes in metabotype within individuals and across individuals with different metabotypes, distinct metabolomes emerged. Influential metabolites (variables importance in projection score>2) included several phenolic compounds, carnitine and derivatives, fatty acid and amino acid metabolites, and some medications. Based on the distinct metabolomes of producers vs. non-producers, the ODMA metabotype may be a marker of gut microbiome functionality broadly involved in nutrient and bioactive metabolism, and should be evaluated for relevance to precision nutrition initiatives.


Sign in / Sign up

Export Citation Format

Share Document