Aryl Hydrocarbon Receptor
Recently Published Documents





2022 ◽  
Eva-Lena Stange ◽  
Franziska Rademacher ◽  
Katharina Antonia Drerup ◽  
Nina Heinemann ◽  
Lena Möbus ◽  

Staphylococcus (S.) aureus is an important pathogen causing various infections including - as most frequently isolated bacterium - cutaneous infections. Keratinocytes as the first barrier cells of the skin respond to S. aureus by the release of defense molecules such as cytokines and antimicrobial peptides. Although several pattern recognition receptors expressed in keratinocytes such as Toll-like and NOD-like receptors have been reported to detect the presence of S. aureus, the mechanisms underlying the interplay between S. aureus and keratinocytes are still emerging. Here we report that S. aureus induced gene expression of CYP1A1 and CYP1B1, responsive genes of the aryl hydrocarbon receptor (AhR). AhR activation by S. aureus was further confirmed by AhR gene reporter assays. AhR activation was mediated by factor(s) < 2 kDa secreted by S. aureus. Whole transcriptome analyses and real-time PCR analyses identified IL-24, IL-6 and IL-1beta as cytokines induced in an AhR-dependent manner in S. aureus-treated keratinocytes. AhR inhibition in a 3D organotypic skin equivalent confirmed the crucial role of the AhR in mediating the induction of IL-24, IL-6 and IL-1beta upon stimulation with living S. aureus. Taken together, we further highlight the important role of the AhR in cutaneous innate defense and identified the AhR as a novel receptor mediating the sensing of the important skin pathogen S. aureus in keratinocytes.

2022 ◽  
pp. 026988112110558
K Fehsel ◽  
K Schwanke ◽  
BA Kappel ◽  
E Fahimi ◽  
E Meisenzahl-Lechner ◽  

Background: The superior therapeutic benefit of clozapine is often associated with metabolic disruptions as obesity, insulin resistance, tachycardia, higher blood pressure, and even hypertension. Aims: These adverse vascular/ metabolic events under clozapine are similar to those caused by polycyclic aromatic hydrocarbons (PAHs), and clozapine shows structural similarity to well-known ligands of the aryl hydrocarbon receptor (AhR). Therefore, we speculated that the side effects caused by clozapine might rely on AhR signaling. Methods: We examined clozapine-induced AhR activation by luciferase reporter assays in hepatoma HepG2 cells and we proved upregulation of the prototypical AhR target gene Cyp1A1 by realtime-PCR (RT-PCR) analysis and enzyme activity. Next we studied the physiological role of AhR in clozapine’s effects on human preadipocyte differentiation and on vasodilatation by myography in wild-type and AhR-/- mice. Results: In contrast to other antipsychotic drugs (APDs), clozapine triggered AhR activation and Cyp1A1 expression in HepG2 cells and adipocytes. Clozapine induced adipogenesis via AhR signaling. After PGF2α-induced constriction of mouse aortic rings, clozapine strongly reduced the maximal vasorelaxation under acetylcholine in rings from wild-type mice, but only slightly in rings from AhR-/- mice. The reduction was also prevented by pretreatment with the AhR antagonist CH-223191. Conclusion: Identification of clozapine as a ligand for the AhR opens new perspectives to explain common clozapine therapy-associated adverse effects at the molecular level.

Josiane Fernandes Silva ◽  
Juliana A. Bolsoni ◽  
Rafael M. Costa ◽  
Juliano V. Alves ◽  
Alecsander F. M. Bressan ◽  

2021 ◽  
Vol 12 ◽  
Ri Sa ◽  
Meiliang Guo ◽  
Danyan Liu ◽  
Feng Guan

Abnormally high expression of aryl hydrocarbon receptor (AhR) has been implicated in dedifferentiation of radioiodine-refractory papillary thyroid cancer (RR-PTC). This study aimed to evaluate the differentiation effect of AhR antagonist in PTC, and to explore the potential mechanism of it. Results showed that AhR antagonists promoted differentiation of PTC, as shown as increase in 125I uptake and Na/I symporter (NIS) expression level. CircRNA microarray in K1 cells treated with StemRegenin 1(SR1) revealed that hsa_circ_0006741 (circSH2B3) was down-regulated in SR1 treated K1 cells. Downregulation of circSH2B3 increased 125I uptake and NIS expression levels. CircSH2B3 acted as an endogenous sponge of hsa-miR-4640-5p and modulated IGF2BP2 expression. IGF2BP2 overexpression induced dedifferentiation of PTC, while silencing IGF2BP2 accelerated differentiation of PTC cells. Rescue studies showed that the dedifferentiation activity of AhR was modulated by the circSH2B3/miR-4640-5p/IGF2BP2 axis. Our findings confirmed for the first time that AhR antagonists promote differentiation of PTC via inhibiting the circSH2B3/miR-4640-5p/IGF2BP2 axis, offering a novel therapeutic approach and a potential marker for differentiation of PTC.

Pharmacology ◽  
2021 ◽  
pp. 1-7
Atsuhito Kubota ◽  
Masaru Terasaki ◽  
Rie Takai ◽  
Masaki Kobayashi ◽  
Ryuta Muromoto ◽  

<b><i>Introduction:</i></b> 5-Aminosalicylic acid (5-ASA) is widely used as a key drug in inflammatory bowel disease. It has been recently reported that 5-ASA induces CD4 + Foxp3 + regulatory T cells (Tregs) in the colon via the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that regulates inflammation. However, the role of 5-ASA as an AhR agonist that induces Tregs in the spleen remains unknown. <b><i>Methods:</i></b> In the present study, we investigated these themes using an AhR-mediated transactivation assay and flow cytometry analysis. The experiments were conducted by using DR-EcoScreen cells and C57BL/6 mice. <b><i>Results:</i></b> The DR-EcoScreen cell-based transactivation assay revealed that 5-ASA acted as a weak AhR agonist at concentrations of ≥300 μM (1.31–1.45-fold), and that a typical AhR agonist, 2,3,7,8-tetrachlorodibenzo-<i>p</i>-dioxin (TCDD), activated AhR at a concentration of 0.1 nM (22.8-fold). In addition, the treatment of mouse splenic cells with 300 μM 5-ASA in a primary culture assay significantly induced CD4+CD25 + Foxp3 + Tregs (control vs. 5-ASA: 9.0% vs. 12.65%, <i>p</i> &#x3c; 0.05), while 0.1 nM TCDD also showed significant induction of Tregs (control vs. TCDD: 9.0% vs. 14.1%, <i>p</i> &#x3c; 0.05). Interestingly, this induction was eliminated by co-treatment with an AhR antagonist, CH-223191. <b><i>Discussion:</i></b> These results suggest that 5-ASA is a weak agonist of AhR and thereby induces Tregs in spleen cells. Our findings may provide useful insights into the mechanism by which 5-ASA regulates inflammation.

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3559
Maddalena Napolitano ◽  
Gabriella Fabbrocini ◽  
Fabrizio Martora ◽  
Vincenzo Picone ◽  
Paola Morelli ◽  

Aryl Hydrocarbon Receptor (AhR) is an evolutionary transcription factor which acts as a crucial sensor of different exogenous and endogenous molecules Recent data indicate that AhR is implicated in several physiological processes such as cell physiology, host defense, proliferation and differentiation of immune cells, and detoxification. Moreover, AhR involvement has been reported in the development and maintenance of several pathological conditions. In recent years, an increasing number of studies have accumulated highlighting the regulatory role of AhR in the physiology of the skin. However, there is evidence of both beneficial and harmful effects of AHR signaling. At present, most of the evidence concerns inflammatory skin diseases, in particular atopic dermatitis, psoriasis, acne, and hidradenitis suppurativa. This review examines the role of AhR in skin homeostasis and the therapeutic implication of its pharmacological modulation in these cutaneous inflammatory diseases.

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3498
So-Yeon Kim ◽  
Younseo Oh ◽  
Sungsin Jo ◽  
Jong-Dae Ji ◽  
Tae-Hwan Kim

Aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor and regulates differentiation and function of various immune cells such as dendritic cells, Th17, and regulatory T cells. In recent studies, it was reported that AhR is involved in bone remodeling through regulating both osteoblasts and osteoclasts. However, the roles and mechanisms of AhR activation in human osteoclasts remain unknown. Here we show that AhR is involved in human osteoclast differentiation. We found that AhR expressed highly in the early stage of osteoclastogenesis and decreased in mature osteoclasts. Kynurenine (Kyn), formylindolo[3,4-b] carbazole (FICZ), and benzopyrene (BaP), which are AhR agonists, inhibited osteoclast formation and Kyn suppressed osteoclast differentiation at an early stage. Furthermore, blockade of AhR signaling through CH223191, an AhR antagonist, and knockdown of AhR expression reversed Kyn-induced inhibition of osteoclast differentiation. Overall, our study is the first report that AhR negatively regulates human osteoclast differentiation and suggests that AhR could be good therapeutic molecule to prevent bone destruction in chronic inflammatory diseases such as rheumatoid arthritis (RA).

2021 ◽  
Vol 22 (24) ◽  
pp. 13293
Xiaoting Xu ◽  
Xi Zhang ◽  
Yuzhu Yuan ◽  
Yongrui Zhao ◽  
Hamza M. Fares ◽  

The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates a wide range of biological and toxicological effects by binding to specific ligands. AhR ligands exist in various internal and external ecological systems, such as in a wide variety of hydrophobic environmental contaminants and naturally occurring chemicals. Most of these ligands have shown differential responses among different species. Understanding the differences and their mechanisms helps in designing better experimental animal models, improves our understanding of the environmental toxicants related to AhR, and helps to screen and develop new drugs. This review systematically discusses the species differences in AhR activation effects and their modes of action. We focus on the species differences following AhR activation from two aspects: (1) the molecular configuration and activation of AhR and (2) the contrast of cis-acting elements corresponding to AhR. The variations in the responses seen in humans and other species following the activation of the AhR signaling pathway can be attributed to both factors.

2021 ◽  
Vol 14 ◽  
Yiyun Liu ◽  
Yangsheng Chen ◽  
Ruihong Zhu ◽  
Li Xu ◽  
Heidi Qunhui Xie ◽  

Glioblastoma is the most frequent and aggressive primary astrocytoma in adults. The high migration ability of the tumor cells is an important reason for the high recurrence rate and poor prognosis of glioblastoma. Recently, emerging evidence has shown that the migration ability of glioblastoma cells was inhibited upon the activation of aryl hydrocarbon receptor (AhR), suggesting potential anti-tumor effects of AhR agonists. Rutaecarpine is a natural compound with potential tumor therapeutic effects which can possibly bind to AhR. However, its effect on the migration of glioblastoma is unclear. Therefore, we aim to explore the effects of rutaecarpine on the migration of human glioblastoma cells U87 and the involvement of the AhR signaling pathway. The results showed that: (i) compared with other structural related alkaloids, like evodiamine and dehydroevodiamine, rutaecarpine was a more potent AhR activator, and has a stronger inhibitory effect on the glioblastoma cell migration; (ii) rutaecarpine decreased the migration ability of U87 cells in an AhR-dependent manner; (iii) AhR mediated the expression of a tumor suppressor interleukin 24 (IL24) induced by rutaecarpine, and AhR-IL24 axis was involved in the anti-migratory effects of rutaecarpine on the glioblastoma. Besides IL24, other candidates AhR downstream genes both associated with cancer and migration were proposed to participate in the migration regulation of rutaecarpine by RNA-Seq and bioinformatic analysis. These data indicate that rutaecarpine is a naturally-derived AhR agonist that could inhibit the migration of U87 human glioblastoma cells mostly via the AhR-IL24 axis.

Sign in / Sign up

Export Citation Format

Share Document