‘Hot spot’ assessment of land cover change in the CWANA region using AVHRR satellite imagery

Author(s):  
D Celis ◽  
E De Pauw
2015 ◽  
Vol 112 (44) ◽  
pp. 13579-13584 ◽  
Author(s):  
Rebecca R. Hernandez ◽  
Madison K. Hoffacker ◽  
Michelle L. Murphy-Mariscal ◽  
Grace C. Wu ◽  
Michael F. Allen

Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km2 of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Koji Osumi

<p><strong>Abstract.</strong> As many studies which detect land cover changes using satellite imagery have been conducted previously; this study uses satellite imagery from Sentinel-2, which was launched by European Space Agency (ESA) in 2015. The main characteristics of Sentinel-2 are: a 10&amp;thinsp;m spatial resolution in visible and Near-infrared (NIR) bands, a revisit frequency of 5 days based on combining Sentinel-2A and Sentinel-2B, and a free and open data policy. Using bands 4 and 8 of Sentinel-2, NDVI is calculated to assess whether the target being observed contains live green vegetation. The difference was calculated by subtracting NDVI of one day from another. Changes from vegetation to built-up areas can be detected via the changes in NDVI. However, automatically computing land cover changes generates errors under present circumstances. In order to detect land cover change accurately, human review is required. This study focuses on how NDVI can assist analysts in quantifying land cover change. As a result of the analysis, land cover changes were extracted by differencing NDVI images of 2 periods, but some errors arose in the places where land cover did not change but NDVI fluctuated owing to other reasons. I show the land cover changes which were detected, the places where it is difficult to detect the change, and methods to reduce the errors. Abstracts</p>


Sign in / Sign up

Export Citation Format

Share Document