scholarly journals Satellite Imagery System in Water Resources Management: Impacts from the Land Use and Land Cover Change

2020 ◽  
Vol 13 (3) ◽  
pp. 197-204
Author(s):  
Carolyn Payus ◽  
Lim Ann Huey ◽  
F.A. Farrah Adn
2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2013 ◽  
Vol 405-408 ◽  
pp. 2201-2207 ◽  
Author(s):  
Xi Nan Li ◽  
Ping Xie ◽  
Yong Zhu

In order to evaluate quantitatively the hydrology and water resources effects of land use and land cover change (LUCC), a zonal watershed hydrological model considering land use and land cover change (ZWHM-LUCC) was developed. According to the daily rainfall, evaporation and discharge data of Wuding River Basin during 1980~2000, the parameters of the model were calibrated and verified. The results show that coefficient of water balance (R) is 1.004 and the qualified rate of annual runoff depth (DR) is86.67% during calibration period 1986~2000 and the R is 0.938 and the DR is 66.67% during calibration verification 1980~1985. The calculated results indicate that this model has good adaptability in Wuding River Basin. The different scenarios of land use/land cover were analyzed by the model, with 2000 year as base year, 13 scenarios were designed, which be helpful to study water-economy-ecology interactions and natural-social dualistic, and provide the scientific basis for Wuding river basin water and soil conservation planning and water resources planning.


2020 ◽  
Vol 712 ◽  
pp. 136449 ◽  
Author(s):  
Helen Aghsaei ◽  
Naghmeh Mobarghaee Dinan ◽  
Ali Moridi ◽  
Zahra Asadolahi ◽  
Majid Delavar ◽  
...  

2021 ◽  
Author(s):  
Arnold Mahonko Banda ◽  
Kawawa Banda ◽  
Enock Sakala ◽  
Machaya Chomba ◽  
Imasiku Anayawa Nyambe

Abstract River floodplains such as the Barotse Flood Plain (BFP) in Western Zambia, provide a large number of ecosystem services and economic value for the inhabitants. Yet, in spite of its importance, the flood plain has been vulnerable to drivers of land use change suggestive of potential wetland degradation. This study aimed at determining the extent of land use change in the wetland of BFP in the selected years between 1980 to 2020 and identifying, and assessing drivers of land use change in the wetlands of BFP using satellite data. The study utilized both secondary and primary data sources. Primary data was collected using interview schedule, key informants’ interviews, Participatory Rural Appraisal and field observations. The Raosoft random sample calculator was used to determine the sample size of heads of households from 9 districts that are found within the Barotse Flood Plain. Then, proportional sample size per district out of 270 was calculated. It was found that there is land use change in the wetlands of BFP caused by many driving factors such as biophysical, economic, infrastructure development, technological, demographic, agriculture and others. The study recommended strategies such as the Government of Zambia, traditional leaders and other stakeholder should embark on protection and conservation of BFP. In addition, new policies on land use and water resources management in the wetlands such regularly monitoring of all activities taking place in and around the wetland of BFP by Water Resources Management Authority should be explored.


Sign in / Sign up

Export Citation Format

Share Document