scholarly journals Detecting land cover change using Sentinel-2

2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Koji Osumi

<p><strong>Abstract.</strong> As many studies which detect land cover changes using satellite imagery have been conducted previously; this study uses satellite imagery from Sentinel-2, which was launched by European Space Agency (ESA) in 2015. The main characteristics of Sentinel-2 are: a 10&amp;thinsp;m spatial resolution in visible and Near-infrared (NIR) bands, a revisit frequency of 5 days based on combining Sentinel-2A and Sentinel-2B, and a free and open data policy. Using bands 4 and 8 of Sentinel-2, NDVI is calculated to assess whether the target being observed contains live green vegetation. The difference was calculated by subtracting NDVI of one day from another. Changes from vegetation to built-up areas can be detected via the changes in NDVI. However, automatically computing land cover changes generates errors under present circumstances. In order to detect land cover change accurately, human review is required. This study focuses on how NDVI can assist analysts in quantifying land cover change. As a result of the analysis, land cover changes were extracted by differencing NDVI images of 2 periods, but some errors arose in the places where land cover did not change but NDVI fluctuated owing to other reasons. I show the land cover changes which were detected, the places where it is difficult to detect the change, and methods to reduce the errors. Abstracts</p>

2021 ◽  
Vol 62 (1) ◽  
pp. 1-9
Author(s):  
Hung Le Trinh ◽  
Ha Thu Thi Le ◽  
Loc Duc Le ◽  
Long Thanh Nguyen ◽  

Classification of built-up land and bare land on remote sensing images is a very difficult problem due to the complexity of the urban land cover. Several urban indices have been proposed to improve the accuracy in classifying urban land use/land cover from optical satellite imagery. This paper presents an development of the EBBI (Enhanced Built-up and Bareness Index) index based on the combination of Landsat 8 and Sentinel 2 multi-resolution satellite imagery. Near infrared band (band 8a), short wave infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) Landsat 8 image were used to calculate EBBI index. The results obtained show that the combination of Landsat 8 and Sentinel 2 satellite images improves the spatial resolution of EBBI index image, thereby improving the accuracy of classification of bare land and built-up land by about 5% compared with the case using only Landsat 8 images.


2020 ◽  
Vol 13 (1) ◽  
pp. 78
Author(s):  
Oliver Sefrin ◽  
Felix M. Riese ◽  
Sina Keller

Land cover and its change are crucial for many environmental applications. This study focuses on the land cover classification and change detection with multitemporal and multispectral Sentinel-2 satellite data. To address the challenging land cover change detection task, we rely on two different deep learning architectures and selected pre-processing steps. For example, we define an excluded class and deal with temporal water shoreline changes in the pre-processing. We employ a fully convolutional neural network (FCN), and we combine the FCN with long short-term memory (LSTM) networks. The FCN can only handle monotemporal input data, while the FCN combined with LSTM can use sequential information (multitemporal). Besides, we provided fixed and variable sequences as training sequences for the combined FCN and LSTM approach. The former refers to using six defined satellite images, while the latter consists of image sequences from an extended training pool of ten images. Further, we propose measures for the robustness concerning the selection of Sentinel-2 image data as evaluation metrics. We can distinguish between actual land cover changes and misclassifications of the deep learning approaches with these metrics. According to the provided metrics, both multitemporal LSTM approaches outperform the monotemporal FCN approach, about 3 to 5 percentage points (p.p.). The LSTM approach trained on the variable sequences detects 3 p.p. more land cover changes than the LSTM approach trained on the fixed sequences. Besides, applying our selected pre-processing improves the water classification and avoids reducing the dataset effectively by 17.6%. The presented LSTM approaches can be modified to provide applicability for a variable number of image sequences since we published the code of the deep learning models. The Sentinel-2 data and the ground truth are also freely available.


Author(s):  
P. Knoefel ◽  
D. Herrmann ◽  
M. Sindram ◽  
M. Hovenbitzer

Abstract. The research and development project named Landscape Change Detection Service (German abbreviation: LaVerDi) was initiated by the German Federal Agency for Cartography and Geodesy (BKG). Within the scope of the project a monitoring service for landscape changes was developed and implemented using free Copernicus satellite data for an automated derivation of potential land cover change. This change indication is meant to be used to update or continue BKG in-house products, such as the Digital Land Cover Model Germany (LBM-DE), in a comprehensive and uniform quality. The results can be further used for numerous applications or as change information for administration and planning, and for the compilation of spatial statistics. It satisfies the users' need for a national service for open data on land cover changes and thus represents the first automatic and verified national satellite product for land cover changes in Germany. As input data the service uses pre-processed Sentinel-2 data from the European Copernicus satellite program, as well as an image segmentation approach to extract change objects. Using an improved cloud mask algorithm, Sentinel-2 tiles with up to maximum cloud coverage of 60% can be used for analysis. The service (data processing, change detection, visualisation) runs on the German “Copernicus Data and Utilization Platform” (CODE-DE). As of December 2020, the INSPIRE-compliant LaVerDi web service is operational. The thematic accuracy of the generated change layers is above the given requirements (minimum of 80%), considering the 95% confidence interval for all relevant land cover classes in certain test areas. The transferability of the methodology has been successfully shown by a prototypic nationwide demonstrator in early 2020 and is therefore expected to reliably detect both long-term and seasonal changes.


2011 ◽  
Vol 15 (9) ◽  
pp. 1-26 ◽  
Author(s):  
Emmanuel M. Attua ◽  
Joshua B. Fisher

Abstract Urban land-cover change is increasing dramatically in most developing nations. In Africa and in the New Juaben municipality of Ghana in particular, political stability and active socioeconomic progress has pushed the urban frontier into the countryside at the expense of the natural ecosystems at ever-increasing rates. Using Landsat satellite imagery from 1985 to 2003, the study found that the urban core expanded by 10% and the peri-urban areas expanded by 25% over the period. Projecting forward to 2015, it is expected that urban infrastructure will constitute 70% of the total land area in the municipality. Giving way to urban expansion were losses in open woodlands (19%), tree fallow (9%), croplands (4%), and grass fallow (3%), with further declines expected for 2015. Major drivers of land-cover changes are attributed to demographic changes and past microeconomic policies, particularly the Structural Adjustment Programme (SAP); the Economic Recovery Programme (ERP); and, more recently, the Ghana Poverty Reduction Strategy (GPRS). Pluralistic land administration, complications in the land tenure systems, institutional inefficiencies, and lack of capacity in land administration were also key drivers of land-cover changes in the New Juaben municipality. Policy recommendations are presented to address the associated challenges.


2021 ◽  
Author(s):  
Aristoklis Lagos ◽  
Stavroula Sigourou ◽  
Panayiotis Dimitriadis ◽  
Theano Iliopoulou ◽  
Demetris Koutsoyiannis

&lt;p&gt;Changes in the land cover occur all the time at the surface of the Earth both naturally and anthropogenically. In the last decades, certain types of land cover change, including urbanization, have been correlated to local temperature increase, but the general dynamics of this relationship are still not well understood. This work examines whether land cover is a parameter affecting temperature increase by employing global datasets of land cover change, i.e. the Historical Land-Cover Change Global Dataset, and daily temperature from the NOAA database. We thoroughly investigate the temperature variability and its possible correlation to the different types of land-cover changes. A comparison is specifically made between the rate of temperature increase measured in urban areas, and the same rate measured in nearby non-urban areas.&lt;/p&gt;


2020 ◽  
Vol 12 (11) ◽  
pp. 1804 ◽  
Author(s):  
Nicolas Lamquin ◽  
Sébastien Clerc ◽  
Ludovic Bourg ◽  
Craig Donlon

Copernicus is a European system for monitoring the Earth in support of European policy. It includes the Sentinel-3 satellite mission which provides reliable and up-to-date measurements of the ocean, atmosphere, cryosphere, and land. To fulfil mission requirements, two Sentinel-3 satellites are required on-orbit at the same time to meet revisit and coverage requirements in support of Copernicus Services. The inter-unit consistency is critical for the mission as more S3 platforms are planned in the future. A few weeks after its launch in April 2018, the Sentinel-3B satellite was manoeuvred into a tandem configuration with its operational twin Sentinel-3A already in orbit. Both satellites were flown only thirty seconds apart on the same orbit ground track to optimise cross-comparisons. This tandem phase lasted from early June to mid October 2018 and was followed by a short drift phase during which the Sentinel-3B satellite was progressively moved to a specific orbit phasing of 140° separation from the sentinel-3A satellite. In this paper, an output of the European Space Agency (ESA) Sentinel-3 Tandem for Climate study (S3TC), we provide a full methodology for the homogenisation and harmonisation of the two Ocean and Land Colour Instruments (OLCI) based on the tandem phase. Homogenisation adjusts for unavoidable slight spatial and spectral differences between the two sensors and provide a basis for the comparison of the radiometry. Persistent radiometric biases of 1–2% across the OLCI spectrum are found with very high confidence. Harmonisation then consists of adjusting one instrument on the other based on these findings. Validation of the approach shows that such harmonisation then procures an excellent radiometric alignment. Performed on L1 calibrated radiances, the benefits of harmonisation are fully appreciated on Level 2 products as reported in a companion paper. Whereas our methodology aligns one sensor to behave radiometrically as the other, discussions consider the choice of the reference to be used within the operational framework. Further exploitation of the measurements indeed provides evidence of the need to perform flat-fielding on both payloads, prior to any harmonisation. Such flat-fielding notably removes inter-camera differences in the harmonisation coefficients. We conclude on the extreme usefulness of performing a tandem phase for the OLCI mission continuity as well as for any optical mission to which the methodology presented in this paper applies (e.g., Sentinel-2). To maintain the climate record, it is highly recommended that the future Sentinel-3C and Sentinel-3D satellites perform tandem flights when injected into the Sentinel-3 time series.


2019 ◽  
Vol 11 (19) ◽  
pp. 2304 ◽  
Author(s):  
Hanna Huryna ◽  
Yafit Cohen ◽  
Arnon Karnieli ◽  
Natalya Panov ◽  
William P. Kustas ◽  
...  

A spatially distributed land surface temperature is important for many studies. The recent launch of the Sentinel satellite programs paves the way for an abundance of opportunities for both large area and long-term investigations. However, the spatial resolution of Sentinel-3 thermal images is not suitable for monitoring small fragmented fields. Thermal sharpening is one of the primary methods used to obtain thermal images at finer spatial resolution at a daily revisit time. In the current study, the utility of the TsHARP method to sharpen the low resolution of Sentinel-3 thermal data was examined using Sentinel-2 visible-near infrared imagery. Compared to Landsat 8 fine thermal images, the sharpening resulted in mean absolute errors of ~1 °C, with errors increasing as the difference between the native and the target resolutions increases. Part of the error is attributed to the discrepancy between the thermal images acquired by the two platforms. Further research is due to test additional sites and conditions, and potentially additional sharpening methods, applied to the Sentinel platforms.


Sign in / Sign up

Export Citation Format

Share Document