The Terrestrial Atmosphere

2020 ◽  
pp. 157-172
Author(s):  
Cesare Barbieri ◽  
Ivano Bertini
2020 ◽  
Author(s):  
Ashot Chilingarian ◽  
Gagik Hovsepyan ◽  
Balabek Sargsyan

1984 ◽  
Vol 62 (8) ◽  
pp. 780-788 ◽  
Author(s):  
I. C. McDade ◽  
E. J. Llewellyn ◽  
R. G. H. Greer ◽  
G. Witt

A simple vibrational relaxation model that reproduces the observed vibrational distribution of the [Formula: see text] Herzberg II bands in the terrestrial nightglow is used to derive the altitude profiles of the fractional populations in the individual vibrational levels. Through consideration of these profiles it is shown that if [Formula: see text] is the Barth precursor of O(1S) in the nightglow then, at least in the terrestrial atmosphere, the higher vibrational levels appear to be more effective in the Barth transfer step than the lower vibrational levels.


2017 ◽  
Vol 22 (2) ◽  
pp. 138-145 ◽  
Author(s):  
L. F. Chernogor ◽  
◽  
M. B. Shevelyov ◽  

2019 ◽  
Vol 16 (20) ◽  
pp. 4051-4064 ◽  
Author(s):  
Martin Jiskra ◽  
Jeroen E. Sonke ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Daniel Obrist

Abstract. The tundra plays a pivotal role in the Arctic mercury (Hg) cycle by storing atmospheric Hg deposition and shuttling it to the Arctic Ocean. A recent study revealed that 70 % of the atmospheric Hg deposition to the tundra occurs through gaseous elemental mercury (GEM or Hg(0)) uptake by vegetation and soils. Processes controlling land–atmosphere exchange of Hg(0) in the Arctic tundra are central, but remain understudied. Here, we combine Hg stable isotope analysis of Hg(0) in the atmosphere, interstitial snow air, and soil pore air, with Hg(0) flux measurements in a tundra ecosystem at Toolik Field Station in northern Alaska (USA). In the dark winter months, planetary boundary layer (PBL) conditions and Hg(0) concentrations were generally stable throughout the day and small Hg(0) net deposition occurred. In spring, halogen-induced atmospheric mercury depletion events (AMDEs) occurred, with the fast re-emission of Hg(0) after AMDEs resulting in net emission fluxes of Hg(0). During the short snow-free growing season in summer, vegetation uptake of atmospheric Hg(0) enhanced atmospheric Hg(0) net deposition to the Arctic tundra. At night, when PBL conditions were stable, ecosystem uptake of atmospheric Hg(0) led to a depletion of atmospheric Hg(0). The night-time decline of atmospheric Hg(0) was concomitant with a depletion of lighter Hg(0) isotopes in the atmospheric Hg pool. The enrichment factor, ε202Hgvegetationuptake=-4.2 ‰ (±1.0 ‰) was consistent with the preferential uptake of light Hg(0) isotopes by vegetation. Hg(0) flux measurements indicated a partial re-emission of Hg(0) during daytime, when solar radiation was strongest. Hg(0) concentrations in soil pore air were depleted relative to atmospheric Hg(0) concentrations, concomitant with an enrichment of lighter Hg(0) isotopes in the soil pore air, ε202Hgsoilair-atmosphere=-1.00 ‰ (±0.25 ‰) and E199Hgsoilair-atmosphere=0.07 ‰ (±0.04 ‰). These first Hg stable isotope measurements of Hg(0) in soil pore air are consistent with the fractionation previously observed during Hg(0) oxidation by natural humic acids, suggesting abiotic oxidation as a cause for observed soil Hg(0) uptake. The combination of Hg stable isotope fingerprints with Hg(0) flux measurements and PBL stability assessment confirmed a dominant role of Hg(0) uptake by vegetation in the terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra.


1971 ◽  
Vol 15 ◽  
pp. 298-307
Author(s):  
Yoji Kondo

AbstractThe scientific rationale for variable star observations from outside the Earth’s atmosphere will be discussed, followed by a review and discussion of existing observational techniques with reference to their capabilities and limitations. Existing techniques to be discussed will cover aircraft-, balloon-, rocket- and satellite-borne experiments, and observations thus far obtained will also be reviewed. Experiments, planned or under consideration, and also future prospects of obtaining variable star observations from outside the terrestrial atmosphere will be discussed.


Sign in / Sign up

Export Citation Format

Share Document