Model tests and numerical simulations on evaluation method of earthquake induced failure of rock slopes

2019 ◽  
pp. 644-650
Author(s):  
Hideki Nakamura ◽  
Makoto Ishimaru ◽  
Kosuke Hidaka
2018 ◽  
Vol 12 (04) ◽  
pp. 1841001 ◽  
Author(s):  
Ö. Aydan ◽  
Y. Takahashi ◽  
N. Iwata ◽  
R. Kiyota ◽  
K. Adachi

The authors have been performing some scaled model tests to investigate the response and stability of rock slopes against planar sliding. In these tests, rockbolts/rockanchors are modeled and their reinforcement effects on rock slopes against planar sliding during ground shaking are investigated. These model tests are also used to check the reliability of the numerical simulations. The authors present the outcomes of both model experiments and numerical simulations and compare their implications on actual rock slopes.


Author(s):  
Shota DEGUCHI ◽  
Mitsuteru ASAI ◽  
Hiroto UEKI ◽  
Yuki TAKEUCHI ◽  
Koji KAWASAKI

2017 ◽  
Vol 144 ◽  
pp. 21-34 ◽  
Author(s):  
Liqin Liu ◽  
Ying Guo ◽  
Haixiang Zhao ◽  
Yougang Tang

Author(s):  
Mathieu Brotons ◽  
Philippe Jean

The accurate prediction of SPM vessel yaw motion is important to its mooring system design. Inconsistencies have been observed between the numerical and model test predictions of offloading responses. In some cases, the numerical simulation predicted unstable yaw behavior of the vessel (fishtailing) while the model tests did not show such instability. This discrepancy between experiment and theory casts doubt as to whether the numerical simulation predicts correctly the vessel yaw motion. The work presented in this paper investigates the following two hypotheses to possibly explain the non-expected fishtailing in the numerical simulations: The mooring software may not accurately integrate non-linear differential equations that describe the yaw motion of the SPM vessel. Some damping terms may be under-estimated in the software (user input issue). To validate the integration scheme of the system of non-linear differential equations as implemented in the mooring software, a stability analysis has been conducted on a shuttle tanker moored to a West Africa deep water buoy. Variations of parameters like the hawser length, its axial stiffness and the vessel’s drag coefficients have been studied to explore their impacts on the vessel yaw stability. The approach is to identify without performing any time domain simulations, the domains of stability by linearizing the differential equations of SPM vessel’s yaw motion around its equilibrium point. The validity of the developed approach is then confirmed by performing time domain simulations of the same case. The second conjecture which may explain the non-expected fishtailing in numerical simulations was that some damping terms may be under-estimated. A semi empirical formula for the drag moment can be derived from rotation tests and comparisons were performed with the engineering model implemented in the mooring analysis software. The results show that by calibrating this damping term with the one derived from the experiments, the numerical simulations would match the stable yaw motion behavior as predicted during model tests. Following the above findings, a tool has been developed to fit the yaw drag moment engineering model based on experimental measurements, for any case of mooring analysis.


2016 ◽  
Vol 11 (3) ◽  
pp. 679-692 ◽  
Author(s):  
Hossain Md. Shahin ◽  
Teruo Nakai ◽  
Kenji Ishii ◽  
Toshikazu Iwata ◽  
Shou Kuroi

2012 ◽  
Vol 04 (03) ◽  
pp. 1250036 ◽  
Author(s):  
AILAN CHE ◽  
XIURUN GE

The seismic behavior of rock slopes accompanied with discontinuity is heavily governed by the geometrical distribution and mechanical properties of discontinuity. Especially, high and steep rock slopes, which are dominated by sub-vertical discontinuity, are likely to collapse due to toppling failure and it causes serious damage to structures surrounding the slopes. Ten thousands of landslides, collapses and other geological disasters occurred in the Wenchuan Ms 8.0 great earthquake on May 12, 2008 in Sichuan province of central China. The field survey during the disaster investigations indicated that it shows the tensile failure close to the top of slop and the shear failure below it. However, it is difficult to assess quantitatively toppling failure potential. In order to clarify mechanism of toppling failure in rock slopes and evaluation on seismic stability, 2D joint elements around each rock column is proposed to simulate the discontinuity of rock slope, which is different from Goodman joint and composed with normal spring Kn and shear spring Ks without volume. By a nonlinear numerical FEM analysis, the dynamic response of the rock slopes could demonstrate the landslide mechanism. Coupled with the effect of amplification on the toppling, the seismic horizontal acceleration at the top of slopes is often large, and then coursed inertia force would far exceed the tensile strength of rock mass. Eventually, the opening and sliding of joint elements occurs on the slope are identified based on the nonlinear characteristics of the joint elements. The result shows that a toppling failure could have occurred on the slope and the sliding plane also could be observed, which shows agreement with the existing investigation flexural toppling failure during the Wenchuan great earthquake.


Sign in / Sign up

Export Citation Format

Share Document