Heteroclinic cycles in equivariant bifurcations

Author(s):  
Michael Field
Keyword(s):  
2004 ◽  
Vol 134 (6) ◽  
pp. 1177-1197 ◽  
Author(s):  
Martin Krupa ◽  
Ian Melbourne

Systems possessing symmetries often admit robust heteroclinic cycles that persist under perturbations that respect the symmetry. In previous work, we began a systematic investigation into the asymptotic stability of such cycles. In particular, we found a sufficient condition for asymptotic stability, and we gave algebraic criteria for deciding when this condition is also necessary. These criteria are satisfied for cycles in R3.Field and Swift, and Hofbauer, considered examples in R4 for which our sufficient condition for stability is not optimal. They obtained necessary and sufficient conditions for asymptotic stability using a transition-matrix technique.In this paper, we combine our previous methods with the transition-matrix technique and obtain necessary and sufficient conditions for asymptotic stability for a larger class of heteroclinic cycles. In particular, we obtain a complete theory for ‘simple’ heteroclinic cycles in R4 (thereby proving and extending results for homoclinic cycles that were stated without proof by Chossat, Krupa, Melbourne and Scheel). A partial classification of simple heteroclinic cycles in R4 is also given. Finally, our stability results generalize naturally to higher dimensions and many of the higher-dimensional examples in the literature are covered by this theory.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450133 ◽  
Author(s):  
Haijun Wang ◽  
Xianyi Li

After a 3D Lorenz-like system has been revisited, more rich hidden dynamics that was not found previously is clearly revealed. Some more precise mathematical work, such as for the complete distribution and the local stability and bifurcation of its equilibrium points, the existence of singularly degenerate heteroclinic cycles as well as homoclinic and heteroclinic orbits, and the dynamics at infinity, is carried out in this paper. In particular, another possible new mechanism behind the creation of chaotic attractors is presented. Based on this mechanism, some different structure types of chaotic attractors are numerically found in the case of small b > 0. All theoretical results obtained are further illustrated by numerical simulations. What we formulate in this paper is to not only show those dynamical properties hiding in this system, but also (more mainly) present a kind of way and means — both "locally" and "globally" and both "finitely" and "infinitely" — to comprehensively explore a given system.


2007 ◽  
Vol 79 (4) ◽  
pp. 563-575 ◽  
Author(s):  
Jaume Llibre ◽  
Marcelo Messias

In this paper we study a class of symmetric polynomial differential systems in R³, which has a set of parallel invariant straight lines, forming degenerate heteroclinic cycles, which have their two singular endpoints at infinity. The global study near infinity is performed using the Poincaré compactification. We prove that for all n <FONT FACE=Symbol>Î</FONT> N there is epsilonn > 0 such that for 0 < epsilon < epsilonn the system has at least n large amplitude periodic orbits bifurcating from the heteroclinic loop formed by the two invariant straight lines closest to the x-axis, one contained in the half-space y > 0 and the other in y < 0.


2004 ◽  
Vol 14 (03) ◽  
pp. 1121-1127 ◽  
Author(s):  
R. LÓPEZ-RUIZ ◽  
S. BOCCALETTI

The conditions for the existence of heteroclinic connections between the transverse modes of a CO 2 laser whose setup has a perfect cylindrical symmetry are discussed by symmetry arguments for the cases of three, four and five interacting modes. Explicit conditions for the parameters are derived, which can guide observation of such phenomena.


2015 ◽  
Vol 20 (2) ◽  
pp. 148-167 ◽  
Author(s):  
Fengjie Geng ◽  
Xianyi Li

A conjugate Lorenz-like system which includes only two quadratic nonlinearities is proposed in this paper. Some basic properties of this system, such as the distribution of its equilibria and their stabilities, the Lyapunov exponents, the bifurcations are investigated by some numerical and theoretical analysis. The forming mechanisms of compound structures of its new chaotic attractors obtained by merging together two simple attractors after performing one mirror operation are also presented. Furthermore, some of its other complex dynamical behaviours, which include the existence of singularly degenerate heteroclinic cycles, the existence of homoclinic and heteroclinic orbits and the dynamics at infinity, etc, are formulated in detail. In the meantime, some problems deserving further investigations are presented.


Sign in / Sign up

Export Citation Format

Share Document