phase oscillators
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 75)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 32 (2) ◽  
Author(s):  
O. E. Omel’chenko

AbstractAbout two decades ago it was discovered that systems of nonlocally coupled oscillators can exhibit unusual symmetry-breaking patterns composed of coherent and incoherent regions. Since then such patterns, called chimera states, have been the subject of intensive study but mostly in the stationary case when the coarse-grained system dynamics remains unchanged over time. Nonstationary coherence–incoherence patterns, in particular periodically breathing chimera states, were also reported, however not investigated systematically because of their complexity. In this paper we suggest a semi-analytic solution to the above problem providing a mathematical framework for the analysis of breathing chimera states in a ring of nonlocally coupled phase oscillators. Our approach relies on the consideration of an integro-differential equation describing the long-term coarse-grained dynamics of the oscillator system. For this equation we specify a class of solutions relevant to breathing chimera states. We derive a self-consistency equation for these solutions and carry out their stability analysis. We show that our approach correctly predicts macroscopic features of breathing chimera states. Moreover, we point out its potential application to other models which can be studied using the Ott–Antonsen reduction technique.


2021 ◽  
Author(s):  
Kevin J. Wischnewski ◽  
Simon B. Eickhoff ◽  
Viktor K. Jirsa ◽  
Oleksandr V. Popovych

Abstract Simulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal selection of parameters, which determine the model’s capability to replicate empirical data. Since the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, we evaluate several alternative approaches to maximize the correspondence between simulated and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO). To compare them, we employ an ensemble of coupled phase oscillators built upon individual empirical structural connectivity of 105 healthy subjects. We determine optimal model parameters from two- and three-dimensional parameter spaces and show that the overall fitting quality of the tested methods can compete with the GS. There are, however, marked differences in the required computational resources and stability properties, which we also investigate before proposing CMAES and BO as efficient alternatives to a high-dimensional GS. For the three-dimensional case, these methods generated similar results as the GS, but within less than 6% of the computation time. Our results contribute to an efficient validation of models for personalized simulations of brain dynamics.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Tayebe Nikfard ◽  
Yahya Hematyar Tabatabaei ◽  
Farhad Shahbazi

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Can Xu ◽  
Xiaohuan Tang ◽  
Huaping Lü ◽  
Karin Alfaro-Bittner ◽  
Stefano Boccaletti ◽  
...  

2021 ◽  
Author(s):  
Simon Hauser ◽  
Matthieu Dujany ◽  
Jonathan Arreguit ◽  
Auke Ijspeert ◽  
Fumiya Iida

2021 ◽  
Vol 31 (12) ◽  
pp. 2150182
Author(s):  
Ryong-Son Kim ◽  
Gi-Hun Tae ◽  
Chol-Ung Choe

We report on a stripe-core mixed spiral chimera in a system of nonlocally coupled phase oscillators, located on the spherical surface, where the spiral wave consisting of phase-locked oscillators is separated by a stripe-type region of incoherent oscillators into two parts. We analyze the existence and stability of the stripe-core mixed spiral chimera state rigorously, on the basis of the Ott–Antonsen reduction theory. The stability diagram for the stationary states including the spiral chimeras as well as incoherent state is presented. Our stability analysis reveals that the stripe-core mixed spiral chimera state emerges as a unique attractor and loses its stability via the Hopf bifurcation. We verify our theoretical results using direct numerical simulations of the model system.


2021 ◽  
Vol 31 (8) ◽  
pp. 081102
Author(s):  
Suresh Kumarasamy ◽  
Dawid Dudkowski ◽  
Awadhesh Prasad ◽  
Tomasz Kapitaniak

Sign in / Sign up

Export Citation Format

Share Document