Structural damage identification based on parameter identification using Monte Carlo method and likelihood estimation

Author(s):  
T. Sato ◽  
L. Zhao ◽  
C. Wan
2018 ◽  
Vol 14 (7) ◽  
pp. 155014771878688 ◽  
Author(s):  
Songtao Xue ◽  
Bo Wen ◽  
Rui Huang ◽  
Liyuan Huang ◽  
Tadanobu Sato ◽  
...  

Structural parameters are the most important factors reflecting structural performance and conditions. As a result, their identification becomes the most essential aspect of the structural assessment and damage identification for the structural health monitoring. In this article, a structural parameter identification method based on Monte Carlo method and likelihood estimate is proposed. With which, parameters such as stiffness and damping are identified and studied. Identification effects subjected to three different conditions with no noise, with Gaussian noise, and with non-Gaussian noise are studied and compared. Considering the existence of damage, damage identification is also realized by the identification of the structural parameters. Both simulations and experiments are conducted to verify the proposed method. Results show that structural parameters, as well as the damages, can be well identified. Moreover, the proposed method is much robust to the noises. The proposed method may be prospective for the application of real structural health monitoring.


2020 ◽  
Vol 14 (1) ◽  
pp. 69-81
Author(s):  
C.H. Li ◽  
Q.W. Yang

Background: Structural damage identification is a very important subject in the field of civil, mechanical and aerospace engineering according to recent patents. Optimal sensor placement is one of the key problems to be solved in structural damage identification. Methods: This paper presents a simple and convenient algorithm for optimizing sensor locations for structural damage identification. Unlike other algorithms found in the published papers, the optimization procedure of sensor placement is divided into two stages. The first stage is to determine the key parts in the whole structure by their contribution to the global flexibility perturbation. The second stage is to place sensors on the nodes associated with those key parts for monitoring possible damage more efficiently. With the sensor locations determined by the proposed optimization process, structural damage can be readily identified by using the incomplete modes yielded from these optimized sensor measurements. In addition, an Improved Ridge Estimate (IRE) technique is proposed in this study to effectively resist the data errors due to modal truncation and measurement noise. Two truss structures and a frame structure are used as examples to demonstrate the feasibility and efficiency of the presented algorithm. Results: From the numerical results, structural damages can be successfully detected by the proposed method using the partial modes yielded by the optimal measurement with 5% noise level. Conclusion: It has been shown that the proposed method is simple to implement and effective for structural damage identification.


Sign in / Sign up

Export Citation Format

Share Document