A Two-step Interval Structural Damage Identification Approach Based on Model Updating and Set-membership Technique

Measurement ◽  
2021 ◽  
pp. 109464
Author(s):  
Jiang Mo ◽  
Lei Wang ◽  
Kaixuan Gu
2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Manolis Georgioudakis ◽  
Vagelis Plevris

Structural damage identification is a scientific field that has attracted a lot of interest in the scientific community during the recent years. There have been many studies intending to find a reliable method to identify damage in structural elements both in location and extent. Most damage identification methods are based on the changes of dynamic characteristics and static responses, but the incompleteness of the test data is a great obstacle for both. In this paper, a structural damage identification method based on the finite element model updating is proposed, in order to provide the location and the extent of structural damage using incomplete modal data of a damaged structure. The structural damage identification problem is treated as an unconstrained optimization problem which is solved using the differential evolution search algorithm. The objective function used in the optimization process is based on a combination of two modal correlation criteria, providing a measure of consistency and correlation between estimations of mode shape vectors. The performance and robustness of the proposed approach are evaluated with two numerical examples: a simply supported concrete beam and a concrete frame under several damage scenarios. The obtained results exhibit high efficiency of the proposed approach for accurately identifying the location and extent of structural damage.


Author(s):  
T. Yin ◽  
L. Yu ◽  
H. P. Zhu

This paper presents a new method for structural damage identification based on the finite element (FE) model updating techniques. First, an objective function is defined as minimizing the sum of differences between the experimental and analytical modal data (natural frequencies and mode shapes), which is set as a nonlinear least-squares problem with bound-constrains. The trust-region approach is then used to solve the minimization problem in order to make this optimization process more robust and reliable. In addition, the expansion and weighting of the original objective function are investigated so that the presented method can be well applied into the damage identification of more real structures. Finally, a numerical simulation model of two-story portal frame structure is adopted to evaluate the efficiency of the proposed technique when both the single and multiple damage cases are set up in the model. Some important issues are also discussed in this paper. The illustrated results show that the single and multiple damages on the two-story portal frame structure can be well identified by the proposed method.


Sign in / Sign up

Export Citation Format

Share Document