Local Bifurcations

2020 ◽  
pp. 33-67
Author(s):  
LM Pismen
Keyword(s):  
2015 ◽  
Vol 25 (12) ◽  
pp. 1550167
Author(s):  
Lei Wang ◽  
Hsiao-Dong Chiang

This paper presents online methods for controlling local bifurcations of power grids with the goal of increasing bifurcation values (i.e. increasing load margins) via network topology optimization, a low-cost control. In other words, this paper presents online methods for increasing power transfer capability subject to static stability limit via switching transmission line out/in (i.e. disconnecting a transmission line or connecting a transmission line). To illustrate the impact of network topology on local bifurcations, two common local bifurcations, i.e. saddle-node bifurcation and structure-induced bifurcation on small power grids with different network topologies are shown. A three-stage online control methodology of local bifurcations via network topology optimization is presented to delay local bifurcations of power grids. Online methods must meet the challenging requirements of online applications such as the speed requirement (in the order of minutes), accuracy requirement and robustness requirement. The effectiveness of the three-stage methodology for online applications is demonstrated on the IEEE 118-bus and a 1648-bus practical power systems.


1986 ◽  
Vol 41 (4) ◽  
pp. 605-614 ◽  
Author(s):  
Ulrich Parlitz ◽  
Werner Lauterborn

The torsion of the local flow around closed orbits and its relation to the superstructure in the bifurcation set of strictly dissipative nonlinear oscillators is investigated. The torsion number describing the twisting behaviour of the flow turns out to be a suitable invariant for the classification of local bifurcations and resonances in those systems. Furthermore, the notions of winding number and resonance are generalized to arbitrary one-dimensional dissipative oscillators.


2015 ◽  
Vol 25 (01) ◽  
pp. 1550012 ◽  
Author(s):  
P. Tchinda Mouofo ◽  
R. Djidjou Demasse ◽  
J. J. Tewa ◽  
M. A. Aziz-Alaoui

A delay predator–prey model is formulated with continuous threshold prey harvesting and Holling response function of type III. Global qualitative and bifurcation analyses are combined to determine the global dynamics of the model. The positive invariance of the non-negative orthant is proved and the uniform boundedness of the trajectories. Stability of equilibria is investigated and the existence of some local bifurcations is established: saddle-node bifurcation, Hopf bifurcation. We use optimal control theory to provide the correct approach to natural resource management. Results are also obtained for optimal harvesting. Numerical simulations are given to illustrate the results.


2000 ◽  
Vol 165 (2) ◽  
pp. 430-467 ◽  
Author(s):  
Freddy Dumortier ◽  
Chris Herssens ◽  
Lawrence Perko

2016 ◽  
Vol 26 (07) ◽  
pp. 1630016 ◽  
Author(s):  
Motomasa Komuro ◽  
Kyohei Kamiyama ◽  
Tetsuro Endo ◽  
Kazuyuki Aihara

We classify the local bifurcations of quasi-periodic [Formula: see text]-dimensional tori in maps (abbr. MT[Formula: see text]) and in flows (abbr. FT[Formula: see text]) for [Formula: see text]. It is convenient to classify these bifurcations into normal bifurcations and resonance bifurcations. Normal bifurcations of MT[Formula: see text] can be classified into four classes: namely, saddle-node, period doubling, double covering, and Neimark–Sacker bifurcations. Furthermore, normal bifurcations of FT[Formula: see text] can be classified into three classes: saddle-node, double covering, and Neimark–Sacker bifurcations. These bifurcations are determined by the type of the dominant Lyapunov bundle. Resonance bifurcations are well known as phase locking of quasi-periodic solutions. These bifurcations are classified into two classes for both MT[Formula: see text] and FT[Formula: see text]: namely, saddle-node cycle and heteroclinic cycle bifurcations of the [Formula: see text]-dimensional tori. The former is reversible, while the latter is irreversible. In addition, we propose a method for analyzing higher-dimensional tori, which uses one-dimensional tori in sections (abbr. ST[Formula: see text]) and zero-dimensional tori in sections (abbr. ST[Formula: see text]). The bifurcations of ST[Formula: see text] can be classified into five classes: saddle-node, period doubling, component doubling, double covering, and Neimark–Sacker bifurcations. The bifurcations of ST[Formula: see text] can be classified into four classes: saddle-node, period doubling, component doubling, and Neimark–Sacker bifurcations. Furthermore, we clarify the relationship between the bifurcations of ST[Formula: see text]/ST[Formula: see text] and the bifurcations of MT[Formula: see text]/FT[Formula: see text]. We present examples of all of these bifurcations.


Sign in / Sign up

Export Citation Format

Share Document