network topology optimization
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fucheng Yang ◽  
Jie Song ◽  
Wei Xiong ◽  
Xutao Cui

In unmanned aerial vehicle (UAV) collaborative electronic reconnaissance network, single UAV is always restricted by flyability and sensing capacity; hence, a cooperative network is built to realize the electronic reconnaissance. In this paper, a three-level electronic reconnaissance network is proposed, including the radiation target, UAV-based electronic reconnaissance equipment, and the command center. Each of the UAVs is capable of monitoring several radiation targets at the same time. Since the topology of the UAV network influences the effect of electronic reconnaissance, in this contribution, optimization is achieved based on the improvement of radiation coverage. If there is no radiation target within the sensing scope, the corresponding UAV will remove according to our novel strategy. Iterate operations are carried out for the relative optimum performance. Simulation results show that the UAV network topology optimization is capable of improving the coverage of radiation targets effectively.


2021 ◽  
Vol 2 (4) ◽  
pp. 91-99
Author(s):  
Zhouwei Gang ◽  
Qianyin Rao ◽  
Lin Guo ◽  
Lin Xi ◽  
Zezhong Feng ◽  
...  

Nowadays, telecommunications have become an indispensable part of our life, 5G technology brings better network speeds, helps the AR and VR industry, and connects everything. It will deeply change our society. Transmission is the vessel of telecommunications. While the vessel is not so healthy, some of them are overloaded, meanwhile, others still have lots of capacity. It not only affects the customer experience, but also affects the development of communication services because of a resources problem. A transmission network is composed of transmission nodes and links. So that the possible topology numbers equal to node number multiplied by number of links means it is impossible for humans to optimize. We use Al instead of humans for topology optimization. The AI optimization solution uses an ITU Machine Learning (ML) standard, Breadth-First Search (BFS) greedy algorithm and other mainstream algorithms to solve the problem. It saves a lot of money and human resources, and also hugely improves traffic absorption capacity. The author comes from the team named "No Boundaries". The team attend ITU AI/ML in 5G Challenge and won the Gold champions (1st place).


2021 ◽  
Vol 2 (4) ◽  
pp. 81-90
Author(s):  
Han Zengfu ◽  
Kong Jiankun ◽  
Wang Zhiguo ◽  
Zhang Yiwei ◽  
Liu Ke ◽  
...  

Existing network topology planning does not fully consider the increasing network traffic and problem of uneven link capacity utilization, resulting in lower resource utilization and unnecessary investments in network construction. The AI-based network topology optimization system introduced in this paper builds a Long Short-Term Memory (LSTM) model for time series traffic forecasting, which uses NetworkX, a Python library, for graph analysis, dynamically optimizes the network topology by edge deletion or addition based on traffic over nodes, and ensures network load balancing when node traffic increases, mainly introducing the LSTM forecasting model building process, parameter optimization strategy, and network topology optimization in some detail. As it effectively enhances resource utilization, this system is vital to the optimization of complex network topology. The end of this paper looks forward to the future development of artificial intelligence, and suggests the possibility of how to cooperate with operator networks and how to establish cross-border ecological development.


2021 ◽  
Vol 11 (15) ◽  
pp. 7107
Author(s):  
Lulu Lv ◽  
Huifang Chen ◽  
Lei Xie ◽  
Kuang Wang

Distributed estimation and tracking of interested objects over wireless sensor networks (WSNs) is a hot research topic. Since network topology possesses distinctive structural parameters and plays an important role for the performance of distributed estimation, we first formulate the communication overhead reduction problem in distributed estimation algorithms as the network topology optimization in this paper. The effect of structural parameters on the algebraic connectivity of a network is overviewed. Moreover, aiming to reduce the communication overhead in Kalman consensus filter (KCF)-based distributed estimation algorithm, we propose a network topology optimization method by properly deleting and adding communication links according to nodes’ local structural parameters information, in which the constraint on the communication range of two nodes is incorporated. Simulation results show that the proposed network topology optimization method can effectively improve the convergence rate of KCF algorithm and achieve a good trade-off between the estimate error and communication overhead.


Author(s):  
Adrian Carballal ◽  
Francisco Cedron ◽  
Iria Santos ◽  
Antonino Santos ◽  
Juan Romero

iScience ◽  
2020 ◽  
Vol 23 (12) ◽  
pp. 101848
Author(s):  
Wenbo Liu ◽  
Liang Xu ◽  
Guoxu Liu ◽  
Hang Yang ◽  
Tianzhao Bu ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Maoqing Zhang ◽  
Lei Wang ◽  
Zhihua Cui ◽  
Jiangshan Liu ◽  
Dong Du ◽  
...  

Fast nondominated sorting genetic algorithm II (NSGA-II) is a classical method for multiobjective optimization problems and has exhibited outstanding performance in many practical engineering problems. However, the tournament selection strategy used for the reproduction in NSGA-II may generate a large amount of repetitive individuals, resulting in the decrease of population diversity. To alleviate this issue, Lévy distribution, which is famous for excellent search ability in the cuckoo search algorithm, is incorporated into NSGA-II. To verify the proposed algorithm, this paper employs three different test sets, including ZDT, DTLZ, and MaF test suits. Experimental results demonstrate that the proposed algorithm is more promising compared with the state-of-the-art algorithms. Parameter sensitivity analysis further confirms the robustness of the proposed algorithm. In addition, a two-objective network topology optimization model is then used to further verify the proposed algorithm. The practical comparison results demonstrate that the proposed algorithm is more effective in dealing with practical engineering optimization problems.


Sign in / Sign up

Export Citation Format

Share Document