On the Application of the Factorization Ideals Associated to a Finite Free Resolution

Author(s):  
J.A. Hermida Alonso ◽  
M.C. Martín Yagüez
Keyword(s):  
2006 ◽  
Vol 13 (3) ◽  
pp. 411-417
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a smooth and connected projective curve. Assume the existence of spanned 𝐿 ∈ Pic𝑎(𝑋), 𝑅 ∈ Pic𝑏(𝑋) such that ℎ0(𝑋, 𝐿) = ℎ0(𝑋, 𝑅) = 2 and the induced map ϕ 𝐿,𝑅 : 𝑋 → 𝐏1 × 𝐏1 is birational onto its image. Here we study the following question. What can be said about the morphisms β : 𝑋 → 𝐏𝑅 induced by a complete linear system |𝐿⊗𝑢⊗𝑅⊗𝑣| for some positive 𝑢, 𝑣? We study the homogeneous ideal and the minimal free resolution of the curve β(𝑋).


2003 ◽  
Vol 10 (1) ◽  
pp. 37-43
Author(s):  
E. Ballico

Abstract We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H 1. In the latter case the corresponding results are only conditional for sheaf cohomology because we do not have the corresponding vanishing theorem for P(V ).


2016 ◽  
Vol 16 (09) ◽  
pp. 1750177 ◽  
Author(s):  
Sabine El Khoury ◽  
Hema Srinivasan

Let [Formula: see text] be a graded algebra with [Formula: see text] and [Formula: see text] being the minimal and maximal shifts in the minimal graded free resolution of [Formula: see text] at degree [Formula: see text]. We prove that [Formula: see text] for all [Formula: see text]. As a consequence, we show that for Gorenstein algebras of codimension [Formula: see text], the subadditivity of maximal shifts [Formula: see text] in the minimal graded free resolution holds for [Formula: see text], i.e. we show that [Formula: see text] for [Formula: see text].


2004 ◽  
Vol 56 (4) ◽  
pp. 716-741 ◽  
Author(s):  
Elena Guardo ◽  
Adam Van Tuyl

AbstractWe study the Hilbert functions of fat points in ℙ1× ℙ1. IfZ⊆ ℙ1× ℙ1is an arbitrary fat point scheme, then it can be shown that for everyiandjthe values of the Hilbert functionHZ(l,j) andHZ(i,l) eventually become constant forl≫ 0. We show how to determine these eventual values by using only the multiplicities of the points, and the relative positions of the points in ℙ1× ℙ1. This enables us to compute all but a finite number values ofHZwithout using the coordinates of points. We also characterize the ACM fat point schemes using our description of the eventual behaviour. In fact, in the case thatZ⊆ ℙ1× ℙ1is ACM, then the entire Hilbert function and its minimal free resolution depend solely on knowing the eventual values of the Hilbert function.


Author(s):  
K. W. Gruenberg

AbstractFor a ZG-lattice A, the nth partial free Euler characteristic εn(A) is defined as the infimum of all where F* varies over all free resolutions of A. It is shown that there exists a stably free resolution E* of A which realises εn(A) for all n≥0 and that the function n → εn(A) is ultimately polynomial no residue classes. The existence of E* is established with the help of new invariants σn(A) of A. These are elements in certain image groups of the projective class group of ZG. When ZG allows cancellation, E* is a minimal free resolution and is essentially unique. When A is periodic, E* is ultimately periodic of period a multiple of the projective period of A.


1990 ◽  
Vol 118 ◽  
pp. 203-216 ◽  
Author(s):  
Mitsuyasu Hashimoto

Let R be a Noetherian commutative ring with, unit element, and Xij be variables with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let S = R[xij] be the polynomial ring over R, and It be the ideal in S, generated by the t × t minors of the generic matrix (xij) ∈ Mm, n(S). For many years there has been considerable interest in finding a minimal free resolution of S/It, over arbitrary base ring R. If we have a minimal free resolution P. over R = Z, the ring of integers, then R′ ⊗z P. is a resolution of S/It over the base ring R′.


1999 ◽  
Vol 27 (7) ◽  
pp. 3459-3472 ◽  
Author(s):  
Kazufomi Eto

1986 ◽  
Vol 38 (1) ◽  
pp. 158-178 ◽  
Author(s):  
Paul Roberts

A common method in studying a commutative Noetherian local ring A is to find a regular subring R contained in A so that A becomes a finitely generated R-module, and in this way one can obtain some information about the original ring by applying what is known about regular local rings. By the structure theorems of Cohen, if A is complete and contains a field, there will always exist such a subring R, and R will be a power series ring k[[X1, …, Xn]] = k[[X]] over a field k. In this paper we show that if R is chosen properly, the ring A (or, more generally, an A-module M), will have a comparatively simple structure as an R-module. More precisely, A (or M) will have a free resolution which resembles the Koszul complex on the variables (X1, …, Xn) = (X); such a complex will be called an (X)-graded complex and will be given a precise definition below.


Sign in / Sign up

Export Citation Format

Share Document