Sampling Distribution of the Proportion

2021 ◽  
pp. 163-192
Author(s):  
James A. Middleton
2021 ◽  
Vol 1 (1) ◽  
pp. 49-58
Author(s):  
Mårten Schultzberg ◽  
Per Johansson

AbstractRecently a computational-based experimental design strategy called rerandomization has been proposed as an alternative or complement to traditional blocked designs. The idea of rerandomization is to remove, from consideration, those allocations with large imbalances in observed covariates according to a balance criterion, and then randomize within the set of acceptable allocations. Based on the Mahalanobis distance criterion for balancing the covariates, we show that asymptotic inference to the population, from which the units in the sample are randomly drawn, is possible using only the set of best, or ‘optimal’, allocations. Finally, we show that for the optimal and near optimal designs, the quite complex asymptotic sampling distribution derived by Li et al. (2018), is well approximated by a normal distribution.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1855-1861 ◽  
Author(s):  
Montgomery Slatkin ◽  
Bruce Rannala

Abstract A theory is developed that provides the sampling distribution of low frequency alleles at a single locus under the assumption that each allele is the result of a unique mutation. The numbers of copies of each allele is assumed to follow a linear birth-death process with sampling. If the population is of constant size, standard results from theory of birth-death processes show that the distribution of numbers of copies of each allele is logarithmic and that the joint distribution of numbers of copies of k alleles found in a sample of size n follows the Ewens sampling distribution. If the population from which the sample was obtained was increasing in size, if there are different selective classes of alleles, or if there are differences in penetrance among alleles, the Ewens distribution no longer applies. Likelihood functions for a given set of observations are obtained under different alternative hypotheses. These results are applied to published data from the BRCA1 locus (associated with early onset breast cancer) and the factor VIII locus (associated with hemophilia A) in humans. In both cases, the sampling distribution of alleles allows rejection of the null hypothesis, but relatively small deviations from the null model can account for the data. In particular, roughly the same population growth rate appears consistent with both data sets.


1977 ◽  
Vol 69 (4) ◽  
pp. 588-592 ◽  
Author(s):  
J. O. Reuss ◽  
P. N. Soltanpour ◽  
A. E. Ludwick

2012 ◽  
Vol 44 (2) ◽  
pp. 391-407 ◽  
Author(s):  
Anand Bhaskar ◽  
Yun S. Song

Obtaining a closed-form sampling distribution for the coalescent with recombination is a challenging problem. In the case of two loci, a new framework based on an asymptotic series has recently been developed to derive closed-form results when the recombination rate is moderate to large. In this paper, an arbitrary number of loci is considered and combinatorial approaches are employed to find closed-form expressions for the first couple of terms in an asymptotic expansion of the multi-locus sampling distribution. These expressions are universal in the sense that their functional form in terms of the marginal one-locus distributions applies to all finite- and infinite-alleles models of mutation.


Sign in / Sign up

Export Citation Format

Share Document