The superposition theorem

Author(s):  
John Bird
1963 ◽  
Vol 85 (2) ◽  
pp. 81-87 ◽  
Author(s):  
E. M. Sparrow

A new representation for diffuse angle factors has been derived which replaces the usual area integrals by more tractable contour (i.e., line) integrals. The new formulation generally simplifies analytical calculation of angle factors. The advantages of the new representation are associated with the reduced order of the integrals (i.e., double reduced to single, quadruple reduced to double) which must be evaluated to calculate the angle factor. An additional benefit of the new representation is that integrals of simpler form are encountered than in the present representation. For the numerical evaluation of angle factors, the reduction in the order of the integrals should have great practical utility. In the case of energy exchange between an infinitesimal element and a finite area, a superposition theorem has been derived which permits results for certain basic surfaces to be linearly combined to yield angle factors for surfaces at other orientations. Several illustrations of the application of the new formulation are presented.


2009 ◽  
Vol 30 (3) ◽  
pp. 653-675 ◽  
Author(s):  
Jürgen Braun ◽  
Michael Griebel

2011 ◽  
Vol 66 (6-7) ◽  
pp. 383-391 ◽  
Author(s):  
Chun-Long Zheng ◽  
Hai-Ping Zhu

With the help of a Cole-Hopf transformation, the nonlinear Burgers system in (3+1) dimensions is reduced to a linear system. Then by means of the linear superposition theorem, a general variable separation solution to the Burgers system is obtained. Finally, based on the derived solution, a new type of localized structure, i.e., a solitonic bubble is revealed and some evolutional properties of the novel localized structure are briefly discussed


Author(s):  
Pierre-Emmanuel Leni ◽  
Yohan D. Fougerolle ◽  
Frédéric Truchetet

In 1900, Hilbert declared that high order polynomial equations could not be solved by sums and compositions of continuous functions of less than three variables. This statement was proven wrong by the superposition theorem, demonstrated by Arnol’d and Kolmogorov in 1957, which allows for writing all multivariate functions as sums and compositions of univariate functions. Amongst recent computable forms of the theorem, Igelnik and Parikh’s approach, known as the Kolmogorov Spline Network (KSN), offers several alternatives for the univariate functions as well as their construction. A novel approach is presented for the embedding of authentication data (black and white logo, translucent or opaque image) in images. This approach offers similar functionalities than watermarking approaches, but relies on a totally different theory: the mark is not embedded in the 2D image space, but it is rather applied to an equivalent univariate representation of the transformed image. Using the progressive transmission scheme previously proposed (Leni, 2011), the pixels are re-arranged without any neighborhood consideration. Taking advantage of this naturally encrypted representation, it is proposed to embed the watermark in these univariate functions. The watermarked image can be accessed at any intermediate resolution, and fully recovered (by removing the embedded mark) without loss using a secret key. Moreover, the key can be different for every resolution, and both the watermark and the image can be globally restored in case of data losses during the transmission. These contributions lie in proposing a robust embedding of authentication data (represented by a watermark) into an image using the 1D space of univariate functions based on the Kolmogorov superposition theorem. Lastly, using a key, the watermark can be removed to restore the original image.


1967 ◽  
Vol 19 ◽  
pp. 792-799 ◽  
Author(s):  
J. Sheehan

In 1927 J. H. Redfield (9) stressed the intimate interrelationship between the theory of finite groups and combinatorial analysis. With this in mind we consider Pólya's theorem (7) and the Redfield-Read superposition theorem (8, 9) in the context of the theory of permutation representations of finite groups. We show in particular how the Redfield-Read superposition theorem can be deduced as a special case from a simple extension of Pólya's theorem. We give also a generalization of the superposition theorem expressed as the multiple scalar product of certain group characters. In a later paper we shall give some applications of this generalization.


Sign in / Sign up

Export Citation Format

Share Document