Dynamic analysis of the light-rail-station viaduct under moving vehicle loads

2021 ◽  
pp. 189-195
Author(s):  
D.S. Shan ◽  
Q. Li ◽  
X.W. Yang
2017 ◽  
Vol 17 (07) ◽  
pp. 1750076 ◽  
Author(s):  
Ai-Rong Liu ◽  
Chun-Hui Liu ◽  
Ji-Yang Fu ◽  
Yong-Lin Pi ◽  
Yong-Hui Huang ◽  
...  

Bending and torsional vibrations caused by moving vehicle loads are likely to affect the traffic safety and comfort for girder bridges with limited torsional rigidity. This paper studies the use of cables made of shape memory alloy (SMA) as the devices of reinforcement and vibration reduction for girder bridges. The SMA cables are featured by their small volume, expedient installation. To investigate their effect on the vibration of girder bridges, theoretical analysis, numerical simulation and experimental study were conducted in this paper. For bending vibration, the governing equations of the girder with and without SMA cables subjected to moving vehicle loads were derived, while for torsional vibration, the finite element (FE) simulations were used instead. The results of bending and torsional vibrations obtained by the analytical approach and FE simulations, respectively, were compared with the experimental ones from model testing. It was confirmed that the SMA cables can restrain the vibration of the girder bridge effectively.


2021 ◽  
Vol 16 (3) ◽  
pp. 131-158
Author(s):  
Qingqing Zhang ◽  
Wenju Zhao ◽  
Jian Zhang

Moving load identification has been researched with regard to the analysis of structural responses, taking into consideration that the structural responses would be affected by the axle parameters, which in its turn would complicate obtaining the values of moving vehicle loads. In this research, a method that identifies the loads of moving vehicles using the modified maximum strain value considering the long-gauge fiber optic strain responses is proposed. The method is based on the assumption that the modified maximum strain value caused only by the axle loads may be easily used to identify the load of moving vehicles by eliminating the influence of these axle parameters from the peak value, which is not limited to a specific type of bridges and can be applied in conditions, where there are multiple moving vehicles on the bridge. Numerical simulations demonstrate that the gross vehicle weights (GVWs) and axle weights are estimated with high accuracy under complex vehicle loads. The effectiveness of the proposed method was verified through field testing of a continuous girder bridge. The identified axle weights and gross vehicle weights are comparable with the static measurements obtained by the static weighing.


2005 ◽  
Vol 8 (5) ◽  
pp. 529-545 ◽  
Author(s):  
Sang-Hyo Kim ◽  
Yong-Seon Lee ◽  
Kwang-Yil Cho

A curved bridge can have two different bearing directions: chordal and tangential direction. This may bring differences of load distribution due to moving vehicles and structural behavior of a curved bridge. This study presents a 3D numerical model that can demonstrate the dynamic responses of a curved bridge to moving vehicles more precisely. The dynamic response induced by the centrifugal rolling motion of a vehicle is identified according to the variations of the superelevation and the radius of curvature of the deck. Dynamic characteristics of the curved bridge with the moving vehicle are analyzed under the condition of the support types and two different support systems. In general, while the vehicle is passing over the curved bridge, the negative reaction occurs in the inside of the girder. The final result shows that the support system located outside the girder is more advantageous than other systems, and the characteristics of load distributions differ from the others in the various conditions of support systems.


Sign in / Sign up

Export Citation Format

Share Document