tangential direction
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 59)

H-INDEX

20
(FIVE YEARS 2)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 628
Author(s):  
Yinlong Zhu ◽  
Xin Chen ◽  
Kaimei Chu ◽  
Xu Wang ◽  
Zhiqiang Hu ◽  
...  

Flexible sensing tends to be widely exploited in the process of human–computer interactions of intelligent robots for its contact compliance and environmental adaptability. A novel flexible capacitive tactile sensor was proposed for multi-directional force sensing, which is based on carbon black/polydimethylsiloxane (PDMS) composite dielectric layer and upper and lower electrodes of carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) composite layer. By changing the ratio of carbon black, the dielectric constant of carbon black/PDMS composite layer increases at 4 wt%, and then decreases, which was explained according to the percolation theory of the conductive particles in the polymer matrix. Mathematical model of force and capacitance variance was established, which can be used to predict the value of the applied force. Then, the prototype with carbon black/PDMS composite dielectric layer was fabricated and characterized. SEM observation was conducted and a ratio was introduced in the composites material design. It was concluded that the dielectric constant of carbon sensor can reach 0.1 N within 50 N in normal direction and 0.2 N in 0–10 N in tangential direction with good stability. Finally, the multi-directional force results were obtained. Compared with the individual directional force results, the output capacitance value of multi-directional force was lower, which indicated the amplitude decrease in capacity change in the normal and tangential direction. This might be caused by the deformation distribution in the normal and tangential direction under multi-directional force.


Author(s):  
Fatih Güven

Gears mounted on a shaft via interference fit are the subject of an internal pressure which is essential for power transmission between gear and shaft. The pressure between shaft and gear is responsible for additional stresses occurring both in shaft and gear. This study examines the effect of stresses arising due to the interference on the crack growth that exists at the root of the gear tooth. The numerical analyses were conducted on models having different rim thicknesses by using the extended finite element method that allows mesh-independent crack modeling and does not need re-meshing. The results showed that internal pressure yields additional stresses in the tangential direction. The increment in tangential stress changed the location and intensity of the maximal 1st principal stress and accelerated crack growth. As the tightness of the fit increased, the crack turned towards the rim rather than towards the tooth. As the crack growth through the rim may cause a catastrophic failure of gear, the increment in tangential stress due to internal pressure is crucial for the fatigue life of the gear.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012014
Author(s):  
F M Tamiri ◽  
E C T Yeo ◽  
M A Ismail

Abstract Hydropower is a renewable technology to store the amount of electricity which is the least expensive. Gravitational Water Vortex Power Plant is an ultra-low head micro hydropower system working ranging from 0.7 m to 2m without having the needs of a large reservoir and installation area. Several researches have been conducted on its basin configuration, orifice diameter, blade configuration, the geometry of the basin shape but not onto the addition of the diffuser at the inlet channel. The function of the diffuser is to direct the water into the basin allowing the water vortex to travel towards the tangential direction where this phenomenon will increase the rate of speed flow through the turbine. The simulation results showed that the addition of the diffuser has significantly increased the tangential velocity and the kinetic energy of the vortices. The increase in the velocity of the flow increased the height of the vortex which also led to the increase in the strength of the vortex and affects the vortex uniformity.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Guofang Wu ◽  
Yinlan Shen ◽  
Feng Fu ◽  
Juan Guo ◽  
Haiqing Ren

Wood is an anisotropic material, the mechanical properties of which are strongly influenced by its microstructure. In wood, grain compression strength and modulus are the weakest perpendicular to the grain compared to other grain directions. FE (finite element) models have been developed to investigate the mechanical properties of wood under transverse compression. However, almost all existing models were deterministic. Thus, the variations of geometry of the cellular structure were not considered, and the statistical characteristic of the mechanical property was not involved. This study aimed to develop an approach to investigate the compression property of wood in a statistical sense by considering the irregular geometry of wood cells. First, the mechanical properties of wood under radial perpendicular to grain compression was experimentally investigated, then the statistical characteristic of cell geometry was extracted from test data. Finally, the mechanical property of wood was investigated using the finite element method in combination with the Monte Carlo Simulation (MCS) techniques using randomly generated FE models. By parameter sensitivity analysis, it was found that the occurrence of the yield points was caused by the bending or buckling of the earlywood axial tracheid cell wall in the tangential direction. The MCS-based stochastic FE analysis was revealed as an interesting approach for assessing the micro-mechanical performance of wood and in assisting in understanding the mechanical behavior of wood based on its hierarchical structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xu-Xi Qin ◽  
He-Ping Chen ◽  
Shu-Juan Wang

An analytical solution of composite curved I-beam considering the partial interaction in tangential direction under uniform distributed load is obtained. Based on the Vlasov curved beam theory, the global balance condition of the problem has been obtained by means of the principle of virtual work; integrating this by parts, the governing system of differential equations and corresponding boundary conditions have been determined. Analytical expressions for the composite beam considering the partial interaction have been developed. In order to verify the validity and the accuracy of this study, the analytical solutions are presented and compared with other three FEM results using the space beam element and the shell element. The deflection and the tangential slip of the composite curved I-beam are investigated.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3128
Author(s):  
Ebrahem Hamouda ◽  
Clemente Cesarano ◽  
Sameh Askar ◽  
Ayman Elsharkawy

This work aims at studying resolutions of the jerk and snap vectors of a point particle moving along a quasi curve in Euclidean 3-space E3. In particular, we obtain the resolution of the jerk and snap vectors along the quasi vectors and offer an alternative resolution of the jerk and snap vectors along the tangential direction and two special radial directions that lie in the osculating and rectifying planes. This alternative resolution for a quasi plane curve in Euclidean 3-space E3 is given as corollary. Moreover, our results are illustrated via some examples.


Friction ◽  
2021 ◽  
Author(s):  
Francesc Pérez-Ràfols ◽  
Lucia Nicola

AbstractA model is proposed herein to investigate the incipient sliding of contacts in the presence of both friction and adhesion, where the interfacial response is modeled based on traction-separation laws. A Maugis-like parameter is defined to characterize the response in the tangential direction. Subsequently, the model is used to investigate the contact between a smooth cylinder and a flat body, where adhesion-friction interactions are strong. A range of behaviors are observed when a tangential displacement is imposed: When the parameter is low, the contact pressure exhibits a relatively constant profile; when it is high, a pressure spike is observed at the edge of the contact. This difference is caused by a significant interface compliance in the former case, which limits the amount of slip. The results for the mid-range values of the Maugis-like parameter can qualitatively replicate various experiments performed using polydimethylsiloxane (PDMS) balls.


2021 ◽  
Author(s):  
Jian Sun

Abstract A spinning gyroscope precesses about the vertical due to a torque acting upon the wheel. The torque is generated by the shift of moment of force by gravity and it points to the vertical instead of the tangential direction of precession. This intuition offers an alternative and straightforward view of precession dynamics in comparison with the literature. It also presumes a dynamic balance of momentum between circular motions of the wheel spin and precession. Accordingly, the gyroscopic dynamics is then applied to the study of galactic motion of the solar system in space and the Galactic mass is calculated with the inclusion of gyroscopic effect of the solar planets. Results indicate that the gyroscopic effect of Mercury orbiting around the Sun can increase the calculated Galactic mass by 23% in comparison with the result obtained by the classic approach.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 91
Author(s):  
John ZuHone ◽  
Kristian Ehlert ◽  
Rainer Weinberger ◽  
Christoph Pfrommer

Radio relics are arc-like synchrotron sources at the periphery of galaxy clusters, produced by cosmic-ray electrons in a μG magnetic field, which are believed to have been (re-)accelerated by merger shock fronts. However, not all relics appear at the same location as shocks as seen in the X-ray. In a previous work, we suggested that the shape of some relics may result from the pre-existing spatial distribution of cosmic-ray electrons, and tested this hypothesis using simulations by launching AGN jets into a cluster atmosphere with sloshing gas motions generated by a previous merger event. We showed that these motions could transport the cosmic ray-enriched material of the AGN bubbles to large radii and stretch it in a tangential direction, producing a filamentary shape resembling a radio relic. In this work, we improve our physical description for the cosmic rays by modeling them as a separate fluid which undergoes diffusion and Alfvén losses. We find that, including this additional cosmic ray physics significantly diminishes the appearance of these filamentary features, showing that our original hypothesis is sensitive to the modeling of cosmic ray physics in the intracluster medium.


2021 ◽  
Vol 6 (6) ◽  
pp. 1341-1361
Author(s):  
Frederik Berger ◽  
David Onnen ◽  
Gerard Schepers ◽  
Martin Kühn

Abstract. The dynamic inflow effect denotes the unsteady aerodynamic response to fast changes in rotor loading due to a gradual adaption of the wake. This does lead to load overshoots. The objective of the paper was to increase the understanding of that effect based on pitch step experiments on a 1.8 m diameter model wind turbine, which are performed in the large open jet wind tunnel of ForWind – University of Oldenburg. The flow in the rotor plane is measured with a 2D laser Doppler anemometer, and the dynamic wake induction factor transients in axial and tangential direction are extracted. Further, integral load measurements with strain gauges and hot-wire measurements in the near and close far wake are performed. The results show a clear gradual decay of the axial induction factors after a pitch step, giving the first direct experimental evidence of dynamic inflow due to pitch steps. Two engineering models are fitted to the induction factor transients to further investigate the relevant time constants of the dynamic inflow process. The radial dependency of the axial induction time constants as well as the dependency on the pitch direction is discussed. It is confirmed that the nature of the dynamic inflow decay is better described by two rather than only one time constant. The dynamic changes in wake radius are connected to the radial dependency of the axial induction transients. In conclusion, the comparative discussion of inductions, wake deployment and loads facilitate an improved physical understanding of the dynamic inflow process for wind turbines. Furthermore, these measurements provide a new detailed validation case for dynamic inflow models and other types of simulations.


Sign in / Sign up

Export Citation Format

Share Document