moving load identification
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 16 (3) ◽  
pp. 131-158
Author(s):  
Qingqing Zhang ◽  
Wenju Zhao ◽  
Jian Zhang

Moving load identification has been researched with regard to the analysis of structural responses, taking into consideration that the structural responses would be affected by the axle parameters, which in its turn would complicate obtaining the values of moving vehicle loads. In this research, a method that identifies the loads of moving vehicles using the modified maximum strain value considering the long-gauge fiber optic strain responses is proposed. The method is based on the assumption that the modified maximum strain value caused only by the axle loads may be easily used to identify the load of moving vehicles by eliminating the influence of these axle parameters from the peak value, which is not limited to a specific type of bridges and can be applied in conditions, where there are multiple moving vehicles on the bridge. Numerical simulations demonstrate that the gross vehicle weights (GVWs) and axle weights are estimated with high accuracy under complex vehicle loads. The effectiveness of the proposed method was verified through field testing of a continuous girder bridge. The identified axle weights and gross vehicle weights are comparable with the static measurements obtained by the static weighing.


2021 ◽  
Vol 13 (12) ◽  
pp. 2291
Author(s):  
Solmaz Pourzeynali ◽  
Xinqun Zhu ◽  
Ali Ghari Zadeh ◽  
Maria Rashidi ◽  
Bijan Samali

Bridge infrastructures are continuously subject to degradation due to aging and excess loading, placing users at risk. It has now become a major concern worldwide, where the majority of bridge infrastructures are approaching their design life. This compels the engineering community to develop robust methods for continuous monitoring of bridge infrastructures including the loads passing over them. Here, a moving load identification method based on the explicit form of Newmark-β method and Generalized Tikhonov Regularization is proposed. Most of the existing studies are based on the state space method, suffering from the errors of a large discretization and a low sampling frequency. The accuracy of the proposed method is investigated numerically and experimentally. The numerical study includes a single simply supported bridge and a three-span continuous bridge, and the experimental study includes a single-span simply supported bridge installed by sensors. The effects of factors such as the number of sensors, sensor locations, road roughness, measurement noise, sampling frequency and vehicle speed are investigated. Results indicate that the method is not sensitive to sensor placement and sampling frequencies. Furthermore, it is able to identify moving loads without disruptions when passing through supports of a continuous bridge, where most the existing methods fail.


2021 ◽  
Vol 11 (2) ◽  
pp. 853 ◽  
Author(s):  
Jing Yang ◽  
Peng Hou ◽  
Caiqian Yang ◽  
Yang Zhang

In order to improve the accuracy of load identification and study the influence of transverse distribution, a novel method was proposed for the moving load identification based on strain influence line and the load transverse distribution under consideration. The load identification theory based on strain influence line was derived, and the strain integral coefficient was proposed for the identification. A series of numerical simulations and experiments were carried out to verify the method. The numerical results showed that the method without considering the load transverse distribution was not suitable for solving the space problem, and the method with the load transverse distribution under consideration has a high identification accuracy and excellent anti-noise performance. The experimental results showed that the speed identification error was smaller than ±5%, and the vehicle speed had no obvious influence on the identification results of the vehicle weight. Moreover, the average identification error of the vehicle weight was smaller than ±10%, and the error of more than 90% of samples was smaller than ±5%.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Guandong Qiao ◽  
Salam Rahmatalla

Abstract This work investigates the effect of elastic support stiffness on the accuracy of moving load identification of Euler–Bernoulli beams. It uses the angular velocity response in solving the ill-posed inverse vibration problem and Tikhonov regularization in the load identification process of two moving loads. The effects from moving loads’ traveling direction, measurement location arrangements, number of participant measurements, and damping ratios are considered in the studies under noisy disturbance conditions. Results show that the stiffness of the translational rotational springs at the boundaries can impact the accuracy of identified moving loads considerably. Angular velocities presented much better results than accelerations under low stiffness conditions when vertical elastic supports were used. However, acceleration showed better performance when a very soft translational spring was used at one end and a much stiffer translational spring at the other end, as well as when rotational springs with large stiffness were used with simply supported beam conditions. The combination of angular velocities and accelerations provided a balanced solution for a wide range of elastic supports with different stiffnesses.


Author(s):  
Xiangang Lai ◽  
A. Emin Aktan ◽  
Kirk Grimmelsman ◽  
Matteo Mazzotti ◽  
Ivan Bartoli

2019 ◽  
Vol 3 (3/4) ◽  
pp. 257-288 ◽  
Author(s):  
Yun Zhou ◽  
Sai Zhou ◽  
Lu Deng ◽  
Songbai Chen ◽  
Weijian Yi

Sign in / Sign up

Export Citation Format

Share Document