Numerical comparison of the bending properties from three different osteosynthesis plate systems: DCP, LC-DCP and LCP

2021 ◽  
pp. 385-388
Author(s):  
F.C.P. Sales ◽  
F.R.S. Oliveira ◽  
J.E. Ribeiro ◽  
R.R.C. da Costa
Author(s):  
Dana Ganor-Stern

Past research has shown that numbers are associated with order in time such that performance in a numerical comparison task is enhanced when number pairs appear in ascending order, when the larger number follows the smaller one. This was found in the past for the integers 1–9 ( Ben-Meir, Ganor-Stern, & Tzelgov, 2013 ; Müller & Schwarz, 2008 ). In the present study we explored whether the advantage for processing numbers in ascending order exists also for fractions and negative numbers. The results demonstrate this advantage for fraction pairs and for integer-fraction pairs. However, the opposite advantage for descending order was found for negative numbers and for positive-negative number pairs. These findings are interpreted in the context of embodied cognition approaches and current theories on the mental representation of fractions and negative numbers.


1991 ◽  
Vol 4 (02) ◽  
pp. 38-45 ◽  
Author(s):  
F. Baumgart

SummaryThe so-called “mixing” of implants and instruments from different producers entertain certain risks.The use of standardized implant materials (e.g. stainless steel ISO 5832/1) from different producers is necessary but is not sufficient to justify the use of an osteosynthesis plate from one source and a bone screw from another.The design, dimensions, tolerances, manufacturing procedure, quality controls, and application technique of the instruments and implants also vary according to make. This can lead to damage, failure or fracture of the biomechanical system called “osteosynthesis” and hence the failure of the treatment undertaken. In the end, it is the patient who pays for these problems.Some examples also illustrate the potential problems for the staff and institutions involved.The use of a unique, consistent, well-tested, and approved set of implants and instruments is to be strongly recommended to avoid any additional risk.


2002 ◽  
Vol 7 (1) ◽  
pp. 31-42
Author(s):  
J. Šaltytė ◽  
K. Dučinskas

The Bayesian classification rule used for the classification of the observations of the (second-order) stationary Gaussian random fields with different means and common factorised covariance matrices is investigated. The influence of the observed data augmentation to the Bayesian risk is examined for three different nonlinear widely applicable spatial correlation models. The explicit expression of the Bayesian risk for the classification of augmented data is derived. Numerical comparison of these models by the variability of Bayesian risk in case of the first-order neighbourhood scheme is performed.


2016 ◽  
Vol 10 (6) ◽  
pp. 390 ◽  
Author(s):  
Qummare Azam ◽  
Mohd Azmi Ismail ◽  
Nurul Musfirah Mazlan ◽  
Musavir Bashir

2012 ◽  
Vol 37 (6) ◽  
pp. 681-685
Author(s):  
Jun YAO ◽  
Ming LI ◽  
Chu-zhou TANG ◽  
Yi-fan LIU
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 436
Author(s):  
Ruirui Zhao ◽  
Minxia Luo ◽  
Shenggang Li

Picture fuzzy sets, which are the extension of intuitionistic fuzzy sets, can deal with inconsistent information better in practical applications. A distance measure is an important mathematical tool to calculate the difference degree between picture fuzzy sets. Although some distance measures of picture fuzzy sets have been constructed, there are some unreasonable and counterintuitive cases. The main reason is that the existing distance measures do not or seldom consider the refusal degree of picture fuzzy sets. In order to solve these unreasonable and counterintuitive cases, in this paper, we propose a dynamic distance measure of picture fuzzy sets based on a picture fuzzy point operator. Through a numerical comparison and multi-criteria decision-making problems, we show that the proposed distance measure is reasonable and effective.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 176
Author(s):  
Valery Astapenko ◽  
Andrei Letunov ◽  
Valery Lisitsa

The effect of plasma Coulomb microfied dynamics on spectral line shapes is under consideration. The analytical solution of the problem is unachievable with famous Chandrasekhar–Von-Neumann results up to the present time. The alternative methods are connected with modeling of a real ion Coulomb field dynamics by approximate models. One of the most accurate theories of ions dynamics effect on line shapes in plasmas is the Frequency Fluctuation Model (FFM) tested by the comparison with plasma microfield numerical simulations. The goal of the present paper is to make a detailed comparison of the FFM results with analytical ones for the linear and quadratic Stark effects in different limiting cases. The main problem is connected with perturbation additions laws known to be vector for small particle velocities (static line shapes) and scalar for large velocities (the impact limit). The general solutions for line shapes known in the frame of scalar perturbation additions are used to test the FFM procedure. The difference between “scalar” and “vector” models is demonstrated both for linear and quadratic Stark effects. It is shown that correct transition from static to impact limits for linear Stark-effect needs in account of the dependence of electric field jumping frequency in FFM on the field strengths. However, the constant jumping frequency is quite satisfactory for description of the quadratic Stark-effect. The detailed numerical comparison for spectral line shapes in the frame of both scalar and vector perturbation additions with and without jumping frequency field dependence for the linear and quadratic Stark effects is presented.


Sign in / Sign up

Export Citation Format

Share Document