Defect Engineering in Heteroepitaxial Layers

2018 ◽  
pp. 355-420
Author(s):  
John E. Ayers
2020 ◽  
Author(s):  
Adam Sapnik ◽  
Duncan Johnstone ◽  
Sean M. Collins ◽  
Giorgio Divitini ◽  
Alice Bumstead ◽  
...  

<p>Defect engineering is a powerful tool that can be used to tailor the properties of metal–organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal–linker bonds, generating more coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially</p><p>retained, even in the amorphised material. We find that the solvent toluene stabilises the MIL-100 (Fe) framework against collapse and leads to a substantial rentention of porosity over the non-stabilised material.</p>


2020 ◽  
Vol 13 (12) ◽  
pp. 120101
Author(s):  
Tsunenobu Kimoto ◽  
Heiji Watanabe

2020 ◽  
Vol 96 (3s) ◽  
pp. 154-159
Author(s):  
Н.Н. Егоров ◽  
С.А. Голубков ◽  
С.Д. Федотов ◽  
В.Н. Стаценко ◽  
А.А. Романов ◽  
...  

Высокая плотность структурных дефектов является основной проблемой при изготовлении электроники на гетероструктурах «кремний на сапфире» (КНС). Современный метод получения ультратонких структур КНС с помощью твердофазной эпитаксиальной рекристаллизации позволяет значительно снизить дефектность в гетероэпитаксиальном слое КНС. В данной работе ультратонкие (100 нм) слои КНС были получены путем рекристаллизации и утонения субмикронных (300 нм) слоев кремния на сапфире, обладающих различным структурным качеством. Плотность структурных дефектов в слоях КНС оценивалась с помощью рентгеноструктурного анализа и просвечивающей электронной микроскопии. Кривые качания от дифракционного отражения Si(400), полученные в ω-геометрии, продемонстрировали максимальную ширину на полувысоте пика не более 0,19-0,20° для ультратонких слоев КНС толщиной 100 нм. Формирование структурно совершенного субмикронного слоя КНС 300 нм на этапе газофазной эпитаксии обеспечивает существенное уменьшение плотности дислокаций в ультратонком кремнии на сапфире до значений ~1 • 104 см-1. Тестовые n-канальные МОП-транзисторы на ультратонких структурах КНС характеризовались подвижностью носителей в канале 725 см2 Вс-1. The high density of structural defects is the main problem on the way to the production of electronics on silicon-on-sapphire (SOS) heteroepitaxial wafers. The modern method of obtaining ultrathin SOS wafers is solid-phase epitaxial recrystallization which can significantly reduce the density of defects in the SOS heteroepitaxial layers. In the current work, ultrathin (100 nm) SOS layers were obtained by recrystallization and thinning of submicron (300 nm) SOS layers, which have various structural quality. The density of structural defects in the layers was estimated by using XRD and TEM. Full width at half maximum of rocking curves (ω-geometry) was no more than 0.19-0.20° for 100 nm ultra-thin SOS layers. The structural quality of 300 nm submicron SOS layers, which were obtained by CVD, depends on dislocation density in 100 nm ultrathin layers. The dislocation density in ultrathin SOS layers was reduced by ~1 • 104 cm-1 due to the utilization of the submicron SOS with good crystal quality. Test n-channel MOS transistors based on ultra-thin SOS wafers were characterized by electron mobility in the channel 725 cm2 V-1 s-1.


2018 ◽  
Vol 140 (4) ◽  
pp. 1358-1364 ◽  
Author(s):  
Dae-Yong Son ◽  
Seul-Gi Kim ◽  
Ja-Young Seo ◽  
Seon-Hee Lee ◽  
Hyunjung Shin ◽  
...  

Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3327-3345
Author(s):  
Xuecheng Yan ◽  
Linzhou Zhuang ◽  
Zhonghua Zhu ◽  
Xiangdong Yao

This review highlights recent advancements in defect engineering and characterization of both metal-free carbons and transition metal-based electrocatalysts.


2021 ◽  
Vol 55 (4) ◽  
pp. 2597-2607
Author(s):  
Hui Lin ◽  
Runlin Xiao ◽  
Ruzhen Xie ◽  
Lihui Yang ◽  
Caiming Tang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document