oxygen mobility
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 38)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 424 ◽  
pp. 127337
Author(s):  
Yuan Feng ◽  
Chongchen Wang ◽  
Can Wang ◽  
Haibao Huang ◽  
Hsing-Cheng Hsi ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1256
Author(s):  
Liliya V. Yafarova ◽  
Grigory V. Mamontov ◽  
Irina V. Chislova ◽  
Oleg I. Silyukov ◽  
Irina A. Zvereva

The paper is focused on the Fe for Co substitution effect on the redox and catalytic properties in the perovskite structure of GdFeO3. The solid oxides with the composition GdFe1−xCoxO3 (x = 0; 0.2; 0.5; 0.8; 1) were obtained by the sol-gel method and characterized by various methods: X-Ray diffraction (XRD), temperature-programmed reduction (H2-TPR), N2 sorption, temperature-programmed desorption of oxygen (TPD-O2), simultaneous thermal analysis (STA), and X-ray photoelectron spectroscopy (XPS). The H2-TPR results showed that an increase in the cobalt content in the GdFe1−xCoxO3 (x = 0; 0.2; 0.5; 0.8; 1) leads to a decrease in the reduction temperature. Using the TPD-O2 and STA methods, the lattice oxygen mobility is increasing in the course of the substitution of Fe for Co. Thus, the Fe substitution in the perovskite leads to an improvement in the oxygen reaction ability. Experiments on the soot oxidation reveal that catalytic oxidation ability increases in the series: GdFe0.5Co0.5O3 ˂ GdFe0.2Co0.8O3 ˂ GdCoO3, which is in good correlation with the increasing oxygen mobility according to H2-TPR, TPD-O2, and STA results. The soot oxidation over GdFeO3 and GdFe0.8Co0.2O3 is not in this range due to the impurities of iron oxides and higher specific surface area.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 713
Author(s):  
Zhidan Fu ◽  
Mengyue Chen ◽  
Qing Ye ◽  
Ning Dong ◽  
Hongxing Dai

Different Cu contents (x wt%) were supported on the cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2) (xCu/OMS-2; x = 1, 5, 15, and 20) via a pre-incorporation method. Physicochemical properties of the OMS-2 and xCu/OMS-2 samples were characterized by means of the XRD, FT-IR, SEM, TG/DTG, ICP-OES, XPS, O2-TPD, H2-TPR, and in situ DRIFTS techniques, and their catalytic activities were measured for the oxidation of CO, ethyl acetate, and toluene. The results show that the Cu species were homogeneously dispersed in the tunnel and framework structure of OMS-2. Among all of the samples, 15Cu/OMS-2 sample exhibited the best activities with the T50% of 65, 165, and 240 °C as well as the T90% of 85, 215, and 290 °C for CO, ethyl acetate and toluene oxidation, respectively, which was due to the existence of the Cu species and Mn3+/Mn4+ redox couples, rich oxygen vacancies, good oxygen mobility, low-temperature reducibility, and strong interaction between the Cu species and the OMS-2 support. The reaction mechanisms were also deduced by analyzing the in situ DRIFTS spectra of the 15Cu/OMS-2 sample. The excellent oxygen mobility associated with the electron transfer between Cu species and Mn3+/Mn4+ redox couples might be conducive to the continuous replenishment of active oxygen species and the constantly generated reactant intermediates, thereby increasing the reactant reaction rate.


2021 ◽  
Vol 860 ◽  
pp. 158257
Author(s):  
Sergei Vereshchagin ◽  
Vyacheslav Dudnikov ◽  
Yury Orlov ◽  
Leonid Solovyov
Keyword(s):  

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 297
Author(s):  
Elena Pikalova ◽  
Vladislav Sadykov ◽  
Ekaterina Sadovskaya ◽  
Nikita Yeremeev ◽  
Alexander Kolchugin ◽  
...  

This work presents the results from a study of the structure and transport properties of Ca-doped La2NiO4+δ. La2−xCaxNiO4+δ (x = 0–0.4) materials that were synthesized via combustion of organic-nitrate precursors and characterized by X-ray diffraction (XRD), in situ XRD using synchrotron radiation, thermogravimetric analysis (TGA) and isotope exchange of oxygen with C18O2. The structure was defined as orthorhombic (Fmmm) for x = 0 and tetragonal (I4/mmm) for x = 0.1–0.4. Changes that occurred in the unit cell parameters and volume as the temperature changed during heating were shown to be caused by the excess oxygen loss. Typical for Ruddlesden–Popper phases, oxygen mobility and surface reactivity decreased as the Ca content was increased due to a reduction in the over-stoichiometric oxygen content with the exception of x = 0.1. This composition demonstrated its superior oxygen transport properties compared to La2NiO4+δ due to the enhanced oxygen mobility caused by structural features. Electrochemical data obtained showed relatively low polarization resistance for the electrodes with a low Ca content, which correlates well with oxygen transport properties.


2021 ◽  
Vol 129 (5) ◽  
pp. 054502
Author(s):  
Soumya Biswas ◽  
M Madhukuttan ◽  
Vinayak B. Kamble

Sign in / Sign up

Export Citation Format

Share Document