Resonator-Mediated Slow Light

Author(s):  
Lute Maleki ◽  
Andrey Matsko
Keyword(s):  
PIERS Online ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 273-278 ◽  
Author(s):  
David J. Moss ◽  
B. Corcoran ◽  
C. Monat ◽  
Christian Grillet ◽  
T. P. White ◽  
...  

PIERS Online ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Gunnar Boettger ◽  
J.-M. Brosi ◽  
A. Maitra ◽  
J. Wang ◽  
A. Y. Petrov ◽  
...  

2008 ◽  
Author(s):  
Constance Chang-Hasnain ◽  
Hailin Wang ◽  
Shun-Lien Chuang ◽  
Philip Hemmer
Keyword(s):  

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1808
Author(s):  
Liqiang Zhuo ◽  
Huiru He ◽  
Ruimin Huang ◽  
Shaojian Su ◽  
Zhili Lin ◽  
...  

The valley degree of freedom, like the spin degree of freedom in spintronics, is regarded as a new information carrier, promoting the emerging valley photonics. Although there exist topologically protected valley edge states which are immune to optical backscattering caused by defects and sharp edges at the inverse valley Hall phase interfaces composed of ordinary optical dielectric materials, the dispersion and the frequency range of the edge states cannot be tuned once the geometrical parameters of the materials are determined. In this paper, we propose a chirped valley graphene plasmonic metamaterial waveguide composed of the valley graphene plasmonic metamaterials (VGPMs) with regularly varying chemical potentials while keeping the geometrical parameters constant. Due to the excellent tunability of graphene, the proposed waveguide supports group velocity modulation and zero group velocity of the edge states, where the light field of different frequencies focuses at different specific locations. The proposed structures may find significant applications in the fields of slow light, micro–nano-optics, topological plasmonics, and on-chip light manipulation.


Sign in / Sign up

Export Citation Format

Share Document