Segmental bridge behavior during bridge testing

2008 ◽  
pp. 71-72
Author(s):  
M Zupcic ◽  
D Banic ◽  
D Tkalcic ◽  
Z Peric
PCI Journal ◽  
1987 ◽  
Vol 32 (6) ◽  
pp. 102-123 ◽  
Author(s):  
Mohamed Abdel-Halim ◽  
Richard M. McClure ◽  
Harry H. West

2016 ◽  
Vol 106 (6) ◽  
pp. 683-690 ◽  
Author(s):  
Hai FANG ◽  
Lu ZHU ◽  
Francis T.K AU

Author(s):  
Tobias Huber ◽  
Stephan Fasching ◽  
Johann Kollegger

<p>Segmental bridge construction combines the advantages of prefabrication, for example the reduction of construction time and very high product quality, with those of common bridge erecting methods. Short precast segments are assembled and prestressed to form the complete superstructure. New methods divide these segments into prefabricated elements to create new lighter versions of the segments. For this to work, new joint types must be developed which can ensure the force transfer between the segments. In this paper, several methods, including a new concept for joining thin-walled pre-fabricated elements, are described. Push-off tests with a constant lateral force were carried out to assess the shear strength and deformation behaviour. The main parameters were the joint type (wet joints: plain, grooved, keyed; dry joints), the mortar type, and the level of lateral force. In this paper, the test results are presented and recalculations with a design code are shown.</p>


Author(s):  
Simon Hoffmann ◽  
Amit Kutumbale ◽  
Danilo Della Ca'

<p>A bridge’s bearings, arguably its most critical components, perform a vital function throughout the bridge’s service life, but the bearings used can also have a significant impact on the bridge construction process. Suitably designed adjustable bearings are an integral part of the incremental launch method of bridge construction, for instance, which can be a very efficient construction method. Adjustable bearings may also support other bridge construction methods, such as segmental bridge construction, where fixities/freedoms that applied during the construction phase require to be changed before the bridge enters service. Lifting bearings, the height of which can be increased, may enable a lack of precision in the structure to be tolerated, and measuring bearings may enable load distribution during bridge construction to be verified, where this is required by the construction method. Design features of otherwise standard bearings that support quick and high-quality installation can also contribute towards the efficiency of the overall bridge construction process, as can the use of bearing designs which minimize bearing size. Bearing solutions and features that facilitate bearing installation and bridge construction in ways such as these are described.</p>


Sign in / Sign up

Export Citation Format

Share Document