deformation behaviour
Recently Published Documents


TOTAL DOCUMENTS

2074
(FIVE YEARS 364)

H-INDEX

65
(FIVE YEARS 10)

2021 ◽  
Vol 7 (2) ◽  
pp. 63-73
Author(s):  
Niken Chatarina ◽  

The relationship between surrounding temperature and deformation behaviour of one full scale concrete plate with compressive strength of 60 MPa was presented in this paper. This research was done in Indonesia. Indonesia presents humid tropical weather. A specimen measuring 3.00m × 1.60m × 0.15m was used. Deformation was obtained by using four embedded vibrating wire strain gauges. The range observation is held between 7 to 28 days. The peaks of deformation follow peaks of surrounding temperature. Some deformation peaks time occur after surrounding temperature peak time, it is called as delay time. As a result, there is a linear relationship between temperature and deformation. The relationship was influenced by a factor which presented its position and delay time. The average error of this model is less than 15% at the age range of 7 until 14 days, and less than 50% at the age range of 15 - 28 days.


2021 ◽  
Vol 6 (12) ◽  
pp. 183
Author(s):  
Abhirup B. Roy-Chowdhury ◽  
Mofreh F. Saleh ◽  
Miguel Moyers-Gonzalez

Permanent deformation or rutting is a major mode of failure in Hot Mix Asphalt (HMA) pavements. The binder used in the asphalt mixture plays an important role in the rutting resistance performance of the mixture. Currently, the Superpave rutting parameter and a more advanced test called multiple stress creep and recovery (MSCR) are the most widely used tests for rutting characterisation of asphalt binders. However, they both have their own merits and demerits. This study was undertaken to introduce a combined Elastic-Plastic (CEP) parameter as an additional binder rheological rutting parameters. The study also aimed at investigating the applicability and potential of this parameter to supplement the existing binder rheological parameters to characterise the properties of asphalt binder related to HMA rutting performance. Additionally, the correlations of the binder rheological parameters with the asphalt mix rutting parameters generated by the dynamic creep and the dynamic modulus tests were investigated. For the polymer-modified binders, Styrene-Butadiene-Styrene (SBS) was added to the PG 70-16 binder at two concentration levels (4, and 6% by the mass of the binder). A dense-graded HMA AC 14 was tested in the Dynamic Modulus (DM) and Dynamic Creep (DC) tests for evaluating the rutting performance. The CEP parameter was found to be much more reliable than the traditional G*/sin (δ) and the non-recoverable creep compliance (Jnr) parameters for evaluating the rutting behaviour of polymer modified asphalt binders, evident from better correlations of CEP with the asphalt mix performance. Unlike Jnr, the CEP parameter revealed a wider range of values, which is comparable with asphalt mixture test results.


Author(s):  
Alister Smith ◽  
Giorgio Barone ◽  
Rene Wackrow ◽  
Richard Stanley

The objective of this study was to develop quantitative acoustic emission (AE) interpretation for uplift pipeline-soil interaction behaviour, enabling early warning of serviceability and ultimate limit state failures in the field. A series of large-scale uplift experiments was performed on a steel pipe in sand with different burial depths (i.e., stress levels), and varying rates of deformation were imposed. A suite of AE parameters was compared with the pipe force and displacement behaviour. Image-based deformation measurements were used to monitor the soil displacement field. AE generation was proportional to the imposed stress level and pipe displacement rate and related to the evolution of the pipe/soil failure mechanism. Relationships have been quantified between AE generation and stress level (R2 values of 0.99), and between AE generation rate and pipe velocity (R2 values ranging from 0.95 to 0.98), enabling interpretation of accelerating deformation behaviour that accompanies progressive ground failure processes. An example interpretation framework demonstrates how AE parameters can be used to identify the mobilisation of peak uplift resistance and quantify accelerating deformation behaviour during post-peak softening.


2021 ◽  
Vol 15 (12) ◽  
pp. 5717-5737
Author(s):  
Nicolas Stoll ◽  
Jan Eichler ◽  
Maria Hörhold ◽  
Tobias Erhardt ◽  
Camilla Jensen ◽  
...  

Abstract. Impurities deposited in polar ice enable the reconstruction of the atmospheric aerosol concentration of the past. At the same time they impact the physical properties of the ice itself such as its deformation behaviour. Impurities are thought to enhance ice deformation, but observations are ambiguous due to a shortage of comprehensive microstructural analyses. For the first time, we systematically analyse micro-inclusions in polar fast flowing ice, i.e. from the East Greenland Ice Core Project ice core drilled through the Northeast Greenland Ice Stream. In direct relation to the inclusions we derive the crystal preferred orientation, fabric, grain size, and microstructural features at 10 depths, covering the Holocene and Late Glacial. We use optical microscopy to create microstructure maps to analyse the in situ locations of inclusions in the polycrystalline, solid ice samples. Micro-inclusions are more variable in spatial distribution than previously observed and show various distributional patterns ranging from centimetre-thick layers to clusters and solitary particles, independent of depth. In half of all samples, micro-inclusions are more often located at or close to the grain boundaries by a slight margin (in the areas occupied by grain boundaries). Throughout all samples we find strong indications of dynamic recrystallisation, such as grain islands, bulging grains, and different types of sub-grain boundaries. We discuss the spatial variability in micro-inclusions, the link between spatial variability and mineralogy, and possible effects on the microstructure and deformation behaviour of the ice. Our results emphasise the need for holistic approaches in future studies, combining microstructure and impurity analysis.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7584
Author(s):  
Nadezhda Artyukhova ◽  
Sergey Anikeev ◽  
Vladimir Promakhov ◽  
Maxim Korobenkov

This research investigates the effect of cobalt on the deformation behaviour of a porous TiNi-based alloy that was obtained by sintering. Porous TiNi-based alloys with cobalt additives, accounting for 0–2 at. % and with a pitch of 0.5, were obtained. The structural-phase state of the porous material was researched by X-ray structural analysis. The effect of different amounts of Co (used as an alloying additive) on the deformation behaviour was investigated by tensile to fracture. The fractograms of fracture of the experimental samples were analysed using scanning electron microscopy. For the first time, the present research shows a diagram of the deformation of a porous TiNi-based alloy that was obtained by sintering under tensile. The stages of deformation were described according to the physical nature of the processes taking place. The effect of the cobalt-alloying additive on the change in the critical stress of martensitic shear was investigated. It was found that the behaviour of the concentration dependency of stress at concentrations under 1.5 at. % Co was determined by an increase in the stress in the TiNi solid solution. This phenomenon is attributed to the arrangement of Co atoms on the Ti sublattice, as well as an increase in the fraction of the B19′ phase in the matrix. The steep rise of the developed forces on the concentration dependency of the martensitic shear stress at 2 at. % Co is presumably attributed to the precipitation hardening of austenite due to the precipitation of finely dispersed coherent Ti3Ni4 phase following the decrease of fraction of martensite. An analysis of fractograms showed that as more cobalt was added, areas of fracture with traces of martensite plates of the B19′ phase started to prevail. At 2 at. % Co these plates fill almost the entire area of the fracture. The research findings presented in this work are of great importance, since they can be used to achieve the set of physical and mechanical properties required for the development of biocompatible materials for implantology.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8236
Author(s):  
Pavol Pecho ◽  
Michal Hrúz ◽  
Andrej Novák ◽  
Libor Trško

This manuscript deals with the detection of internal cracks and defects in aeronautical fibreglass structures. In technical practice, it is problematic to accurately determine the service life or MTBF (Mean Time Between Failure) of composite materials by the methods used in metallic materials. The problem is mainly the inhomogeneous and anisotropic structure of composites, possibly due to the differences in the macrostructure during production, production processes, etc. Diagnostic methods for detecting internal cracks and damage are slightly different, and in practice, it is more difficult to detect defects using non-destructive testing (NDT). The article deals with the use of Radio frequency identification (RFID) technology integrated in the fibreglass laminates of aircraft structures to detect internal defects based on deformation behaviour of passive RFID tag antenna. The experiments proved the potential of using RFID technology in fibreglass composite laminates when using tensile tests applied on specimens with different structural properties. Therefore, the implementation of passive RFID tags into fibreglass composite structures presents the possibilities of detecting internal cracks and structural health monitoring. The result and conclusion of the basic research is determination of the application conditions for our proposed technology in practice. Moreover, the basic research provides recommendations for the applied research in terms of the use in real composite airframe structures.


Author(s):  
António Gomes Correia ◽  
Ana Ramos

AbstractThe type of subgrade of a railroad foundation is vital to the overall performance of the track structure. With the train speed and tonnage increase, as well as environmental changes, the evaluation and influence of subgrade are even more paramount in the railroad track structure performance. A geomechanics classification for subgrade is proposed coupling the stiffness (resilient modulus) and permanent deformation behaviour evaluated by means of repeated triaxial loading tests. This classification covers from fine- to coarse-grained soils, grouped by UIC and ASTM. For this achievement, we first summarize the main models for estimating resilient modulus and permanent deformation, including the evaluation of their robustness and their sensitivity to mechanical and environmental parameters. This is followed by the procedure required to arrive at the geomechanical classification and rating, as well as a discussion of the influence of environmental factors. This work is the first attempt to obtain a new geomechanical classification that can be a useful tool in the evaluation and modelling of the foundation of railway structures.


Sign in / Sign up

Export Citation Format

Share Document