Shield tunnelling in saturated sand – face support pressure and soil deformations

Author(s):  
J Plekkenpol ◽  
J van der Schrier ◽  
H Hergarden
2020 ◽  
Vol 13 (4) ◽  
pp. 372-381
Author(s):  
Zdenek Zizka ◽  
Sebastian Kube ◽  
Britta Schößer ◽  
Markus Thewes

2022 ◽  
Vol 12 (1) ◽  
pp. 500
Author(s):  
Xiang Liu ◽  
Annan Jiang ◽  
Qian Fang ◽  
Yousheng Wan ◽  
Jianye Li ◽  
...  

In this paper, we study the effects of the shield tunnel construction on the deformation of an existing pipeline parallel to and above the new shield tunnel. We propose an analytical solution to predict the spatiotemporal deformation of the existing pipeline and consider different force patterns of the shield tunnelling, i.e., ground volume loss, support pressure, frictional force, and torsional force. The proposed method is validated by the monitoring data of Subway Line 3 of Nanchang and provides a reasonable estimation of the pipeline’s deformation. The parametric analyses are performed to study the influences on the pipeline’s deformation. The main advantage of our paper is that the spatiotemporal characteristics of the existing pipeline’s deformation are analysed, providing longitudinal deformation curve (LDC), deformation development curve (DDC), and grouting reinforcement curve (GRC). Compared with the perpendicular undercrossing project, both LDC and DDC have the same profiles and maximum values and move forward as a whole with the shield tunnel advance. Thus, the spatiotemporal deformation of the overall pipeline can be extrapolated from the deformation of two known points on the pipeline. The spatiotemporal characteristic curves combined with LDC, DDC, and GRC can suggest feasible, effective, and economical construction and grouting schemes to control the pipeline’s deformation after the deformation control standards have been determined.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yu Liang ◽  
Yufei Xiao ◽  
Yuexiang Lin

When shield tunnelling is in a water-rich sand stratum with poor bearing capacity, instability is easily generated, and even ground collapses may occur. The variation of pore water pressure in a water-rich sand stratum during shield tunnelling was analyzed based on a large-scale cross-river shield tunnel in China, which was also investigated by a three-dimensional fluid-solid coupling finite element model. The results show that the influence range of the pore water pressure in front of the excavation face is approximately 2.0 times the excavation diameter and 1.5 times on both sides of the shield. The tunnelling steps would cause obvious variation in the pore water pressure and lead to great disturbance to the surrounding fine sand stratum. The quality of filter cake and the set of support pressure imposes an important impact on the nonlinear variation in the pore pressure, which could cause great disturbance to the stratum. To ensure the safety of the subsequent tunnelling in the fine sand layer, effective treatment should be taken.


Sign in / Sign up

Export Citation Format

Share Document