pressure infiltration
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 64)

H-INDEX

33
(FIVE YEARS 7)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 130
Author(s):  
Ziyang Xiu ◽  
Boyu Ju ◽  
Cungao Duan ◽  
Sen Fu ◽  
Ningbo Zhang ◽  
...  

Graphene has extremely high theoretical strength and electrothermal properties, and its application to Cu-based composites is expected to achieve a breakthrough in the performance of existing composites. As a nano-reinforced body, graphene often needs a long time of ball milling to make it uniformly dispersed, but the ball milling process inevitably brings damage to the graphene, causing the performance of the composite to deviate from expectations. Therefore, this paper uses CH4 as a carbon source to repair graphene through a CVD process to prepare low-damage graphene/Cu composites. The process of graphene defect generation was studied through the ball milling process. The effects of defect content and temperature on the graphene repair process were studied separately. The study found that the graphene defect repair process, the decomposition process of oxygen-containing functional groups, and the deposition process of active C atoms existed simultaneously in the CVD process. When the repair temperature was low, the C atom deposition process and the oxygen-containing functional group decomposition process dominated. In addition, when the repair temperature is high, the graphene defect repair process dominated. 3 wt% graphene/Cu composites were prepared by pressure infiltration, and it was found that the bending strength was increased by 48%, the plasticity was also slightly increased, and the thermal conductivity was increased by 10–40%. This research will help reduce graphene defects, improve the intrinsic properties of graphene, and provide theoretical guidance for the regulation of C defects in composites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongbum Choi ◽  
Xuan Meng ◽  
Zhefeng Xu

AbstractThe conventional manufacturing process of fiber-reinforced metal matrix composites via liquid infiltration processes, preform manufacturing using inorganic binders is essential. However, the procedure involves binder sintering, which requires high energy and long operating times. A new fabrication process without preform manufacturing is proposed to fabricate short carbon fiber (SCF)-reinforced aluminum matrix composites using a low-pressure infiltration method. To improve the wettability between fiber and matrix, fibers were plated copper using an electroless plating process. The low-pressure infiltration method with preformless succeeded in manufacturing a composite with a volume fraction of about 30% of carbon fibers.The fiber orientation of the composite material manufactured without preform and the fiber orientation of the composite material manufactured using an inorganic binder was almost the same. The manufactured composites with preformless have high hardness and high thermal conductivity.


Author(s):  
Lin Dong ◽  
Mei-Jun Liu ◽  
Xiao-Feng Zhang ◽  
Xue-Shi Zhuo ◽  
Jia-Feng Fan ◽  
...  

AbstractEnvironmental barrier coatings (EBCs) effectively protect the ceramic matrix composites (CMCs) from harsh engine environments, especially steam and molten salts. However, open pores inevitably formed during the deposition process provide the transport channels for oxidants and corrosives, and lead to premature failure of EBCs. This research work proposed a method of pressure infiltration densification which blocked these open pores in the coatings. These results showed that it was difficult for aluminum to infiltrate spontaneously, but with the increase of external gas pressure and internal vacuum simultaneously, the molten aluminum obviously moved forward, and finally stopped infiltrating at a depth of a specific geometry. Based on the wrinkled zigzag pore model, a mathematical relationship between the critical pressure with the infiltration depth and the pore intrinsic geometry was established. The infiltration results confirmed this relationship, indicating that for a given coating, a dense thick film can be obtained by adjusting the internal and external gas pressures to drive a melt infiltration.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6618
Author(s):  
Paulina Kozera ◽  
Anna Boczkowska ◽  
Rafał Kozera ◽  
Marcin Małek ◽  
Włodzimierz Idczak

The paper presents the experimental results of static and dynamic compressive tests conducted on ceramic-elastomer composites. The alumina ceramic preforms were fabricated by the four-step method: ceramic mixture preparation, consolidation under pressure, presintering, and sintering under pressure, respectively. To obtain ceramic preforms with a similar volume fraction of open pores, but with different pore sizes, alumina powder with different particle size and a ceramic binder were used, as well as pore-forming agents that were evenly distributed throughout the volume of the molding mass. The composites were obtained using vacuum pressure infiltration of porous alumina ceramic by urea-urethane elastomer in liquid form. As a result, the obtained composites were characterized by two phases that interpenetrated three-dimensionally and topologically throughout the microstructure. The microstructure of the ceramic preforms was revealed by X-ray tomography, which indicated that the alumina preforms had similar porosity of approximately 40% vol. but different pore diameter in the range of 6 to 34 µm. After composite fabrication, image analysis was carried out. Due to the microstructure of the ceramic preforms, the composites differed in the specific surface fraction of the interphase boundaries (Sv). The highest value of the Sv parameter was achieved for composite fabricated by infiltration method of using ceramic preform with the smallest pore size. Static and dynamic tests were carried out using different strain rate: 1.4·10−3, 7·10−2, 1.4·10−1, and 3·103 s−1. Compressive strength, stress at plateau zone, and absorbed energy were determined. It was found that the ceramic-elastomer composites’ ability to absorb energy depended on the specific surface fraction of the interphase boundaries and achieved a value between 15.3 MJ/m3 in static test and 51.1 MJ/m3 for dynamic strain rate.


2021 ◽  
Vol 4 (2) ◽  
pp. 93-96
Author(s):  
Domonkos Balázs Kincses ◽  
Alexandra Kemény ◽  
Borbála Leveles ◽  
Dóra Károly

Abstract Composite metal foams are hybrid structures with the main advantages of high specific strength and mechanical energy absorption associated with low density. In the course of our research, we successfully manufactured functional metal foams of EN AC-44200 matrix filled with lightweight expanded clay aggregate particles (LECAPs) in EN AW-6060 alloy tubes with a diameter of 50 mm and a wall thickness of 5 mm. Manufacturing was performed by low-pressure infiltration directly into the aluminium tube. Six different types of samples were examined: metal matrix syntactic foam, in-situ metal foam, ex-situ metal foam, and their heat-treated pairs. In the compression tests, the heat treatment provided a visible improvement in the results of the ex-situ metal foams.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5563
Author(s):  
Zhe Wu ◽  
Yang Zhang ◽  
Haifeng Jiang ◽  
Shuai Zhao ◽  
Qingnan Wang

Wf/Cu82Al10Fe4Ni4 composites were fabricated by the pressure infiltration method. The composites were compressed by means of a split Hopkinson pressure bar (SHPB) with strain rates of 800 and 1600 s−1 at different temperatures. The microstructure of the composites after dynamic compressing was analyzed by transmission electron microscopy (TEM). Observation revealed that there were high-density dislocations, stacking faults, twins, and recrystallization existing in the copper alloy matrix of the composites. High-density dislocations, stacking faults, and twins were generated due to the significant plastic deformation of the copper alloy matrix under dynamic load impact. We also found that the precipitated phase of the matrix played a role in the second phase strengthening; recrystallized microstructures of copper alloy were generated due to dynamic recrystallization of the copper alloy matrix under dynamic compression at high temperatures.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5092
Author(s):  
Rafał Kozera ◽  
Anna Boczkowska ◽  
Zuzanna D. Krawczyk ◽  
Paulina Kozera ◽  
Maciej Spychalski ◽  
...  

The main goal of this work was the evaluation of the interfacial strength of the carbon fibres/aluminium matrix interface dependently on the utilised composite fabrication method, namely high pressure die casting and gas pressure infiltration. In addition, the influence of a Ni-P coating on the C-fibres was investigated. The proposed measurements of the interfacial strength were carried out by means of the “push-out” method. The interfacial strength of the samples fabricated using the high-pressure infiltration method average between 19.03 MPa and 45.34 MPa.


2021 ◽  
Author(s):  
Yongbum Choi ◽  
Xuan Meng ◽  
ZheFeng Xu

Abstract Conventional manufacturing process of fiber reinforced metal matrix composites via liquid infiltration processes, preform manufacturing using inorganic binders is essential. However, the procedure involves binder sintering, which requires high energy and long operating times. A new fabrication process without preform manufacturing is proposed to fabricate carbon short fiber (CSF)-reinforced aluminum matrix composites using a low-pressure infiltration method. To improve the wettability and avoid interfacial reactions in CSF/Al matrix composites, the fibers were plated with copper using electroless plating process. Various volume fractions of CSFs were used to determine optimum fiber content which would produce versatile mechanical and thermal properties. Effect of CSFs content on properties such as Vickers hardness and thermal conductivity was studied. Cu-plated CSFs showed good bonding with the Al matrix and CSFs were randomly dispersed inside the composites, with CSF content of up to 29.1 vol.%, through the new manufacturing process. It showed better fiber distribution than the composite fabricated perform with SiO2 binder, which was determined by comparing the relative frequency distribution of CSFs in composites. Vickers hardness of the composites showed an obvious improvement over that of the Al matrix, and the hardness increased as the CSF content increased. The Cu-plated CSF (14.3 vol.%) reinforced Al matrix composite exhibited the highest thermal conductivity (184.1 W·m-1·K-1). However, the thermal conductivity decreased as CSF content increased to 29.1 vol.% due to the defects in composite.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zhou ◽  
Jin Ma ◽  
Hongyan Zhou ◽  
Xiaoliang Shi ◽  
Ahmed Mohamed Mahmoud Ibrahim

PurposeThis paper aims to investigate the friction noise properties of M50 matrix curved microporous channel composites filled with solid lubricant Sn-Ag-Cu (MS). Design/methodology/approachPure M50 (MA) and MS are prepared by selective laser melting and vacuum-pressure infiltration technology. The tribological and friction noise properties of MA and MS are tested through dry sliding friction and then the influential mechanism of surface wear sate on friction noise is investigated by analyzing the variation law of noise signals and the worn surface characteristics of MS. FindingsExperimental results show that the friction noise sound pressure level of MS is only 75.6 dB, and it mainly consists of low-frequency noise. The Sn-Ag-Cu improves the surface wear state, which reduces self-excited vibration of the interface caused by fluctuation of friction force, leading to the decrease of friction noise. Originality/valueThis investigation is meaningful to improve the tribological property and suppress the friction noise of M50 bearing steel.


Sign in / Sign up

Export Citation Format

Share Document