1999 ◽  
Vol 15 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Hans van Ophem

In this paper a method is presented to estimate correlated discrete random variables with known univariate distribution functions up to some parameters. We also present an empirical illustration on Dutch recreational data.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.


Metrika ◽  
2021 ◽  
Author(s):  
Krzysztof Jasiński

AbstractIn this paper, we study the number of failed components of a coherent system. We consider the case when the component lifetimes are discrete random variables that may be dependent and non-identically distributed. Firstly, we compute the probability that there are exactly i, $$i=0,\ldots ,n-k,$$ i = 0 , … , n - k , failures in a k-out-of-n system under the condition that it is operating at time t. Next, we extend this result to other coherent systems. In addition, we show that, in the most popular model of independent and identically distributed component lifetimes, the obtained probability corresponds to the respective one derived in the continuous case and existing in the literature.


Author(s):  
Alireza Rezvanian ◽  
Mohammad Reza Meybodi

Because of unpredictable, uncertain and time-varying nature of real networks it seems that stochastic graphs, in which weights associated to the edges are random variables, may be a better candidate as a graph model for real world networks. Once the graph model is chosen to be a stochastic graph, every feature of the graph such as path, clique, spanning tree and dominating set, to mention a few, should be treated as a stochastic feature. For example, choosing stochastic graph as the graph model of an online social network and defining community structure in terms of clique, and the associations among the individuals within the community as random variables, the concept of stochastic clique may be used to study community structure properties. In this paper maximum clique in stochastic graph is first defined and then several learning automata-based algorithms are proposed for solving maximum clique problem in stochastic graph where the probability distribution functions of the weights associated with the edges of the graph are unknown. It is shown that by a proper choice of the parameters of the proposed algorithms, one can make the probability of finding maximum clique in stochastic graph as close to unity as possible. Experimental results show that the proposed algorithms significantly reduce the number of samples needed to be taken from the edges of the stochastic graph as compared to the number of samples needed by standard sampling method at a given confidence level.


OPSEARCH ◽  
2012 ◽  
Vol 49 (3) ◽  
pp. 280-298 ◽  
Author(s):  
Suresh Kumar Barik ◽  
Mahendra Prasad Biswal ◽  
Debashish Chakravarty

Sign in / Sign up

Export Citation Format

Share Document