Two-stage stochastic programming problems involving interval discrete random variables

OPSEARCH ◽  
2012 ◽  
Vol 49 (3) ◽  
pp. 280-298 ◽  
Author(s):  
Suresh Kumar Barik ◽  
Mahendra Prasad Biswal ◽  
Debashish Chakravarty
2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
S. K. Barik ◽  
M. P. Biswal ◽  
D. Chakravarty

Most of the real-life decision-making problems have more than one conflicting and incommensurable objective functions. In this paper, we present a multiobjective two-stage stochastic linear programming problem considering some parameters of the linear constraints as interval type discrete random variables with known probability distribution. Randomness of the discrete intervals are considered for the model parameters. Further, the concepts of best optimum and worst optimum solution are analyzed in two-stage stochastic programming. To solve the stated problem, first we remove the randomness of the problem and formulate an equivalent deterministic linear programming model with multiobjective interval coefficients. Then the deterministic multiobjective model is solved using weighting method, where we apply the solution procedure of interval linear programming technique. We obtain the upper and lower bound of the objective function as the best and the worst value, respectively. It highlights the possible risk involved in the decision-making tool. A numerical example is presented to demonstrate the proposed solution procedure.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Metrika ◽  
2021 ◽  
Author(s):  
Krzysztof Jasiński

AbstractIn this paper, we study the number of failed components of a coherent system. We consider the case when the component lifetimes are discrete random variables that may be dependent and non-identically distributed. Firstly, we compute the probability that there are exactly i, $$i=0,\ldots ,n-k,$$ i = 0 , … , n - k , failures in a k-out-of-n system under the condition that it is operating at time t. Next, we extend this result to other coherent systems. In addition, we show that, in the most popular model of independent and identically distributed component lifetimes, the obtained probability corresponds to the respective one derived in the continuous case and existing in the literature.


Top ◽  
2021 ◽  
Author(s):  
Denise D. Tönissen ◽  
Joachim J. Arts ◽  
Zuo-Jun Max Shen

AbstractThis paper presents a column-and-constraint generation algorithm for two-stage stochastic programming problems. A distinctive feature of the algorithm is that it does not assume fixed recourse and as a consequence the values and dimensions of the recourse matrix can be uncertain. The proposed algorithm contains multi-cut (partial) Benders decomposition and the deterministic equivalent model as special cases and can be used to trade-off computational speed and memory requirements. The algorithm outperforms multi-cut (partial) Benders decomposition in computational time and the deterministic equivalent model in memory requirements for a maintenance location routing problem. In addition, for instances with a large number of scenarios, the algorithm outperforms the deterministic equivalent model in both computational time and memory requirements. Furthermore, we present an adaptive relative tolerance for instances for which the solution time of the master problem is the bottleneck and the slave problems can be solved relatively efficiently. The adaptive relative tolerance is large in early iterations and converges to zero for the final iteration(s) of the algorithm. The combination of this relative adaptive tolerance with the proposed algorithm decreases the computational time of our instances even further.


2010 ◽  
Vol 34 (8) ◽  
pp. 1246-1255 ◽  
Author(s):  
Ramkumar Karuppiah ◽  
Mariano Martín ◽  
Ignacio E. Grossmann

Sign in / Sign up

Export Citation Format

Share Document