Predicting Grain Protein Content by in situ Reflected Spectrum in Winter Wheat

2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

1982 ◽  
Vol 74 (1) ◽  
pp. 130-133 ◽  
Author(s):  
R. J. Goos ◽  
D. G. Westfall ◽  
A. E. Ludwick ◽  
J. E. Goris

2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

1990 ◽  
Vol 70 (3) ◽  
pp. 629-637 ◽  
Author(s):  
CHARLES F. McGUIRE ◽  
LARRY G. BLACKWOOD

The United States Department of Agriculture (USDA) grading standards for wheat places hard red spring and hard red winter (Triticum aestivum L. em. Thell) wheat into separate classes. One important criterion for this designation is kernel type. Because of genotypes being released by plant breeders in recent years, distinction between these two classes is difficult for grain graders. As a consequence some people in the grain industry favor placing both of these wheat types into one class. One hazard of this action is that end use properties of these two wheats, according to some industrial firms, is class dependent. We studied quality characteristics of five hard red spring and seven hard red winter wheat cultivars grown at the same three Montana locations in 5 different years to evaluate this concept. Analysis of variance indicated quality differences between classes for all traits except flour yields, which were similar for the two classes. Flour ash content, farinograph absorption, peak time, stability time, valorimeter, grain protein content, bake absorption, mix time, and loaf volume were all significantly higher for spring than winter wheats. These values were still higher for spring than winter wheats except for test weight when wheat protein content was the co-variate. Both statistical treatments show that hard red spring wheat flour has higher water absorption percent, longer dough mixing requirements, longer dough stability times, and higher loaf volumes than hard red winter wheat flour.Key words: Bread wheat quality, loaf volume, grain protein content, protein quality


2007 ◽  
Author(s):  
Wenjiang Huang ◽  
Jihua Wang ◽  
Xiaoyu Song ◽  
Chunjiang Zhao ◽  
Liangyun Liu

2004 ◽  
Vol 90 (2-3) ◽  
pp. 311-321 ◽  
Author(s):  
Z.J. Wang ◽  
J.H. Wang ◽  
L.Y. Liu ◽  
W.J. Huang ◽  
C.J. Zhao ◽  
...  

2021 ◽  
Author(s):  
Oluwaseyi Shorinola ◽  
James Simmonds ◽  
Luzie Wingen ◽  
Keith Gardner ◽  
Cristobal Uauy

There are now a rich variety of genomic and genotypic resources available to wheat researchers and breeders. However, the generation of high-quality and field-relevant phenotyping data which is required to capture the complexities of gene x environment interactions remains a major bottleneck. Historical datasets from national variety performance trials (NVPT) provide sufficient dimensions, in terms of numbers of years and locations, to examine phenotypic trends and study gene x environment interactions. Using NVPT for winter wheat varieties grown in the UK between 2002 – 2017, we examined temporal trends for eight traits related to yield, adaptation, and grain quality performance. We show a non-stationary linear trend for yield, grain protein content, HFN and days to ripening. Our data also show high environmental stability for yield, grain protein content and specific weight in UK winter wheat varieties and high environmental sensitivity for Hagberg Falling Number. Using the historical NVPT data in a genome-wide association analysis, we uncovered a significant marker-trait association peak on wheat chromosome 6A spanning the NAM-A1 gene that have been previously associated with early senescence. Together our results show the value of utilizing the data routinely collected during variety evaluation process for examining breeding progress and the genetic architecture of important traits.


2008 ◽  
Author(s):  
Wenjiang Huang ◽  
Xiaoyu Song ◽  
Jihua Wang ◽  
Zhijie Wang ◽  
Chunjiang Zhao

Sign in / Sign up

Export Citation Format

Share Document