Prediction of winter wheat grain protein content by ASTER image

2008 ◽  
Author(s):  
Wenjiang Huang ◽  
Xiaoyu Song ◽  
Jihua Wang ◽  
Zhijie Wang ◽  
Chunjiang Zhao
2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

1982 ◽  
Vol 74 (1) ◽  
pp. 130-133 ◽  
Author(s):  
R. J. Goos ◽  
D. G. Westfall ◽  
A. E. Ludwick ◽  
J. E. Goris

2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

1990 ◽  
Vol 70 (3) ◽  
pp. 629-637 ◽  
Author(s):  
CHARLES F. McGUIRE ◽  
LARRY G. BLACKWOOD

The United States Department of Agriculture (USDA) grading standards for wheat places hard red spring and hard red winter (Triticum aestivum L. em. Thell) wheat into separate classes. One important criterion for this designation is kernel type. Because of genotypes being released by plant breeders in recent years, distinction between these two classes is difficult for grain graders. As a consequence some people in the grain industry favor placing both of these wheat types into one class. One hazard of this action is that end use properties of these two wheats, according to some industrial firms, is class dependent. We studied quality characteristics of five hard red spring and seven hard red winter wheat cultivars grown at the same three Montana locations in 5 different years to evaluate this concept. Analysis of variance indicated quality differences between classes for all traits except flour yields, which were similar for the two classes. Flour ash content, farinograph absorption, peak time, stability time, valorimeter, grain protein content, bake absorption, mix time, and loaf volume were all significantly higher for spring than winter wheats. These values were still higher for spring than winter wheats except for test weight when wheat protein content was the co-variate. Both statistical treatments show that hard red spring wheat flour has higher water absorption percent, longer dough mixing requirements, longer dough stability times, and higher loaf volumes than hard red winter wheat flour.Key words: Bread wheat quality, loaf volume, grain protein content, protein quality


2007 ◽  
Author(s):  
Wenjiang Huang ◽  
Jihua Wang ◽  
Xiaoyu Song ◽  
Chunjiang Zhao ◽  
Liangyun Liu

2004 ◽  
Vol 90 (2-3) ◽  
pp. 311-321 ◽  
Author(s):  
Z.J. Wang ◽  
J.H. Wang ◽  
L.Y. Liu ◽  
W.J. Huang ◽  
C.J. Zhao ◽  
...  

2021 ◽  
Author(s):  
Oluwaseyi Shorinola ◽  
James Simmonds ◽  
Luzie Wingen ◽  
Keith Gardner ◽  
Cristobal Uauy

There are now a rich variety of genomic and genotypic resources available to wheat researchers and breeders. However, the generation of high-quality and field-relevant phenotyping data which is required to capture the complexities of gene x environment interactions remains a major bottleneck. Historical datasets from national variety performance trials (NVPT) provide sufficient dimensions, in terms of numbers of years and locations, to examine phenotypic trends and study gene x environment interactions. Using NVPT for winter wheat varieties grown in the UK between 2002 – 2017, we examined temporal trends for eight traits related to yield, adaptation, and grain quality performance. We show a non-stationary linear trend for yield, grain protein content, HFN and days to ripening. Our data also show high environmental stability for yield, grain protein content and specific weight in UK winter wheat varieties and high environmental sensitivity for Hagberg Falling Number. Using the historical NVPT data in a genome-wide association analysis, we uncovered a significant marker-trait association peak on wheat chromosome 6A spanning the NAM-A1 gene that have been previously associated with early senescence. Together our results show the value of utilizing the data routinely collected during variety evaluation process for examining breeding progress and the genetic architecture of important traits.


2021 ◽  
Author(s):  
Peng Jiang ◽  
Peng Zhang ◽  
Lei Wu ◽  
Yi He ◽  
Chang Li ◽  
...  

Abstract Wheat grain protein content (GPC) is an important quality indicator. The GPC of wheat grown in the middle and lower reaches of the Yangtze River is often low. Marker-assisted selection (MAS) is an effective tool for improving quantitative traits; however, except Gpc-B1, most markers have not been effectively applied in GPC improvement, although many related loci have been identified. Linkage analysis using a recombinant inbred line population from the cross of core parents of Ningmai 9 and Yangmai 158 and association mapping using the local cultivated varieties were performed and nine candidate intervals were identified. The appropriate kompetitive allele specific PCR (KASP) markers associated with GPC were successfully developed and applied in 1163 F4 breeding lines. Three markers, Kgpc-2B, Kgpc-2D, and Kgpc-4A, were validated to be significantly related to GPC by large-scale association mapping, and they were combined to achieve the highest efficiency to enhance GPC. We applied these markers in 164 F6 breeding lines and obtained 15 lines with high GPC, indicating their high selective efficiency. Further, strategies for gene exploration in the three significant intervals were proposed. These results were expected to provide a novel route for improving GPC in wheat quality breeding.


Sign in / Sign up

Export Citation Format

Share Document