- Terahertz Radiation for Nondestructive Evaluation

2010 ◽  
Vol 2010.85 (0) ◽  
pp. _2-6_
Author(s):  
Hiroki KAWANO ◽  
Takahide SAKAGAMI ◽  
Shiro KUBO ◽  
Masanori HANGYO ◽  
Takeshi NAGASHIMA

2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 969-975
Author(s):  
Hiroaki Kikuchi ◽  
Yuki Sato

We investigated effects of contact gap on magnetic nondestructive evaluation technique using a magnetic single-yoke probe. Firstly, we evaluated hysteresis curves and impedance related to permeability of the material measured by a single-yoke probe, when an air gap length between the probe and specimens changes. The hysteresis curve gradually inclines to the axis of the magneto-motive force and magneto-motive force at which the magnetic flux is 0 decreases with increasing the gap length. The effective permeability also decreases with increasing the gap thickness. The incremental of gap thickness increases the reluctance inside the magnetic circuit composed of the yoke, specimen and gap, which results in the reduction of flux applying to specimen.


2020 ◽  
Vol 78 (1) ◽  
pp. 104-118
Author(s):  
Sajan Shrestha ◽  
◽  
Vahid Tavaf ◽  
Sourav Banerjee

Author(s):  
Benjamin Schneider ◽  
◽  
Mohammad Rashid Bin Mohammad Shoaib ◽  
Hossein Taheri ◽  
Lucas Koester ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document