Nondestructive Evaluation of Additively Manufactured Metal Components with an Eddy Current Technique

Author(s):  
Benjamin Schneider ◽  
◽  
Mohammad Rashid Bin Mohammad Shoaib ◽  
Hossein Taheri ◽  
Lucas Koester ◽  
...  
2007 ◽  
Vol 40 (4) ◽  
pp. 289-293 ◽  
Author(s):  
M. Pattabiraman ◽  
R. Nagendran ◽  
M.P. Janawadkar

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yating Yu ◽  
Fei Yuan ◽  
Hanchao Li ◽  
Cristian Ulianov ◽  
Guiyun Tian

Concentrated stresses and residual ones are critical for the metal structures’ health, because they can cause microcracks that require emergency maintenance or can result in potential accidents. Therefore, an accurate approach to the measurement of stresses is key for ensuring the health of metal structures. The eddy current technique is an effective approach to detect the stress according to the piezoresistive effect. However, it is limited to detect the surface stress due to the skin effect. In engineering, the stress distribution is inhomogeneous; therefore, to predict the inhomogeneous stress distribution, this paper proposes a nondestructive approach which combines the eddy current technique and finite element (FE) method. The experimental data achieved through the eddy current technique determines the relationship between the applied force and the magnetic flux density, while numerical simulations through the FE method bridge the relationship between the magnetic flux density and the stress distribution in different directions. Therefore, we can predict the inhomogeneous stress nondestructively. As a case study, the applied stress in a three-point-bending simply supported beam was evaluated, and the relative error is less than 8% in the whole beam. This approach can be expected to predict the residual stress in metal structures, such as rail and vehicle structures, if the stress distribution pattern is known.


Sign in / Sign up

Export Citation Format

Share Document