air gap
Recently Published Documents


TOTAL DOCUMENTS

3433
(FIVE YEARS 808)

H-INDEX

64
(FIVE YEARS 10)

2022 ◽  
Vol 431 ◽  
pp. 133909
Author(s):  
Alaa Shaheen ◽  
Salwa AlBadi ◽  
Botagoz Zhuman ◽  
Hanifa Taher ◽  
Fawzi Banat ◽  
...  

Author(s):  
Omar S. Daif ◽  
M. Helmy Abd El-Raouf ◽  
Mohamed Adel Esmaeel ◽  
Abd Elsamie B. Kotb

<span>In this paper, the field analysis of the sleeve rotor induction motor (IM) is carried out taking the rotor ends into consideration. Here, the field system equations are derived using the cylindrical model with applying Maxwell's field equations. It is expected that, both starting and maximum torques will increase with taking the rotor ends than that without rotor ends. A simple model is used to establish the geometry of the rotor ends current density and to investigate the air gap flux density. The magnetic flux is assumed to remain radially constant through the very small air gap length between the sleeve and stator surfaces. Variation of the field in the radial direction is ignored and the skin effect in the axial direction is considered. The axial distributions of the air gap flux density, the sleeve current density components and the force density have been determined. The motor performance is carried out taking into account the effects of the rotor ends on the starting and normal operations. The sleeve rotor resistance and leakage reactance have been obtained in terms of the cylindrical geometry of the machine. These equivalent circuit parameters have been calculated and plotted as functions of the motor speed with and without the rotor ends.</span>


Desalination ◽  
2022 ◽  
Vol 526 ◽  
pp. 115539
Author(s):  
Abolfazl Ansari ◽  
Fariba Malekpour Galogahi ◽  
David V. Thiel ◽  
Fernanda Helfer ◽  
Graeme Millar ◽  
...  

Desalination ◽  
2022 ◽  
Vol 525 ◽  
pp. 115497
Author(s):  
Baek-Gyu Im ◽  
Lijo Francis ◽  
Ravichandran Santosh ◽  
Woo-Seung Kim ◽  
Noreddine Ghaffour ◽  
...  

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yijie Zhang ◽  
Juhong Jia ◽  
Ziyi Guo

AbstractA personal microclimate management system is designed to maintain thermal comfort which allows people to overcome a harsh environment. It consists of several micro-fans placed in the garment side seam to provide cooling air. The computational fluid dynamics method was used to simulate the three-dimensional model and analysis the influence of fan’s number and air gap distance. The obtained results depict that the introduced cool airflow will find its way along paths with flow resistance minimized and exhaust through several separated exit. The body heat flux is taken away at the same time. The convection effect is enhanced by the increase in the fans’ numbers, but the fans’ cooling effect varies a lot because of various air gap distances. When the air gap is small enough, the cooling air impact the body surface directly and causes fierce heat loss. While the air gap distance is large enough, the heat transfer along the skin surface could be enhanced by the eddy flow which is existed in the air gap between body and garment. These phenomena can maintain the body’s thermal comfort in a suitable range.


Author(s):  
Kitisak Chimklin ◽  
Chatchapol Chungchoo

In Hard Disk Drive (HDD) manufacturing, there is always a concern about the cutting defects that are caused by residual cutting chips. Only a small amount of 10 μm chips (act as the air gap) can cause the workpiece to tilt and shift from the correct position, and thus affect the dimension of the workpiece (mainly the Base HDD). For this reason, researchers adapted the adjustable micrometer as a simulation device that resembles the air gap for the design of the Air Gap Sensor Module. The design of experiments using response surface methodology will be studied to confirm the appropriate factors of the prototype. This study reports the optimization of the main factors that affect Air Gap Sensor Module condition: Air Nozzle Diameter 2.303 mm, Air Pressure 0.1 MPa, and Sampling Time 645 ms, which has a high square of the coefficient correlation (R-squared = 99.0%) with a close relationship between gap distance and air pressure. The relationship between these variables is mostly linear. The R-squared error percentage of actual value is less than 0.93% compared to predicted value. The mathematical model results and experimental values were consistent and able to predict response variables. The Air Gap Sensor Module can provide the measurement results in micron ccuracy and displays light and beep to confirm as acceptable or reject gap conditions with the uncertainty of measurement ± 0.001 mm.


2022 ◽  
Author(s):  
Bhavna Rajput ◽  
Ritambhara Dubey ◽  
Bahni Ray ◽  
Apurba Das ◽  
Prabal Talukdar

Abstract An improved numerical model is developed for coupled heat and moisture transport in fire protective suit exposed to flash fire. This model is combined with Pennes' bio-heat transfer model and subsequently, second-degree burn time is estimated using Henriques' burn integral. Natural convection is considered inside the air gap present between the multilayer clothing ensemble and the skin. Comparisons of temperature and moisture distribution within the multilayer clothing, air gap, and the skin during the exposure are presented considering combined heat and moisture transport and only heat transport. Effect of moisture transport on the protective performance of the fire protective suit is shown. Impact of both horizontal and vertical air gap orientations on second-degree burn time is studied. Effect of temperature-dependent thermo-physical properties, relative humidity, fiber regain, different exposure conditions and fabric combinations for the fire protective suits on burn time is analyzed.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 513
Author(s):  
Shoufa Liu ◽  
Muthuramalingam Thangaraj ◽  
Khaja Moiduddin ◽  
Abdulrahman M. Al-Ahmari

Titanium alloy is widely used for orthodontic technology and easily machined using the EDM process. In the EDM process, the workpiece and tool electrode must be separated by a continuous air gap during the machining operation to generate discharge energy in this method. In the present study, an endeavor was made to analyze the effects of a servo feed air gap control and tool electrode in the EDM process. The developed mechanical setup consists of a linear action movement with zero backlash along the X-axis, which can be controlled up to 0.03 mm. It was observed that the suggested air gap control scheme can enhance the servo feed mechanism on a machining titanium alloy. A tungsten carbide electrode can enhance the surface measures owing to its ability to produce tiny craters with uniform distribution. Since it produces a little crater and has a higher melting point, a tungsten carbide electrode can create lesser surface roughness than a copper tool and brass tool electrode.


Sign in / Sign up

Export Citation Format

Share Document