Soil liquefaction vulnerability mapping due to seismic activity using geo-statistics, GIS and geotechnical data

2012 ◽  
pp. 891-896
Author(s):  
Bhuyan Habibullah ◽  
Jiro Kuwano ◽  
Shinya Tachibana ◽  
Shintaro Yamaoka
2020 ◽  
Vol 8 (5) ◽  
pp. 2546-2554

The design of skyscrapers involves lot of aspects such as the building must withstand heavy dead loads, should have safety measures against fire, floors must be easily accessible, and should have resistant against wind and seismic loads that can be detrimental to the safety of the skyscraper. Pile foundations are usually adopted for high rise buildings and when it is combined with raft slab they ensure that the problems of differential settlement are taken care of. In this paper the scenario of designing a skyscraper in seismic zone that is prone to earthquakes and the ground condition is such that it is located in vicinity of sea. Andaman and Nicobar isle is one similar place it falls under Zone V as per Indian Standards, hence prone to seismic activity and since it is surrounded by Bay of Bengal and Andaman sea, when seismic activity occurs there is a high chance of soil liquefaction to occur hence proper structural designs should be embraced.


Author(s):  
We Shinn Ku ◽  
Roger Zimmermann

We present an information architecture using Web services for exchanging and utilizing geotechnical information, which is of critical interest to a large number of municipal, state and federal agencies as well as private enterprises involved with civil infrastructures. For example, in the case of soil liquefaction hazard assessment, insurance companies rely on the availability of geotechnical data for evaluating potential earthquake risks and consequent insurance premiums. The exchange of geotechnical information is currently hampered by a lack of a common data format and service infrastructure. We propose an infrastructure of Web services, which handles geotechnical data via an XML format. Hereafter we report on the design and some initial experiences.


Author(s):  
Scot D. Weaver ◽  
Thomas E. Lefchik ◽  
Marc I. Hoit ◽  
Kirk Beach

2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Sign in / Sign up

Export Citation Format

Share Document