Interprocess Communication via Crossbar for Shared Memory Multiprocessor Systems-on-Chip

2015 ◽  
pp. 97-120
Author(s):  
Luiza de Macedo ◽  
Nadia Nedjah ◽  
Fábio Pessanha
MASKAY ◽  
2013 ◽  
Vol 3 (1) ◽  
pp. 40
Author(s):  
Wilson Mauricio Chicaiza ◽  
Daniel Gonzalo Verdesoto

En el presente documento se presenta una breve caracterización de los medios de comunicación empleados en arquitecturas multiprocesadas. Esta caracterización tiene como objetivo principal el mostrar un nuevo modelo de comunicación basado en conmutación de paquetes a los cuales se les denomina como Networks-On-Chip (NoC). Esta publicación muestra una arquitectura de red llamada NoC Hermes, la cual fue interconectada a un Multiprocessor-Systems-on-Chip (MPSoC) compuesto de cuatro procesadores MicroBlaze. Está conexión se la realizó gracias al diseño y desarrollo de una Interfaz de Red generada en código VHDL. Por medio de la Interfaz de Red se consiguió que los procesadores MicroBlaze interactúen con los Switches de Hermes a fin de crear una arquitectura multiprocesada interconectada por una NoC. Con el motivo de realizar comparaciones también se creó otra arquitectura de multiprocesadores interconectados por buses. Para ambas arquitecturas se desarrolló una aplicación de Esteganografía enla que existe multiprocesamiento de dos procesadores trabajando simultáneamente. Lamentablemente sobre dicha aplicación no fue posible medir directamente la latencia y el consumo de energía, razón por la cual se utilizó simuladores que permitieron estimar dichas mediciones.


2009 ◽  
Vol 20 (01) ◽  
pp. 167-183 ◽  
Author(s):  
WOLFGANG BEIN ◽  
LAWRENCE L. LARMORE ◽  
RÜDIGER REISCHUK

Multiprocessor systems with a global shared memory provide logically uniform data access. To hide latencies when accessing global memory each processor makes use of a private cache. Several copies of a data item may exist concurrently in the system. To guarantee consistency when updating an item a processor must invalidate copies of the item in other private caches. To exclude the effect of classical paging faults, one assumes that each processor knows its own data access sequence, but does not know the sequence of future invalidations requested by other processors. Performance of a processor with this restriction can be measured against the optimal behavior of a theoretical omniscient processor, using competitive analysis. We present a [Formula: see text]-competitive randomized online algorithm for this problem for cache size of 2, and prove a matching lower bound on the competitiveness. The algorithm is derived with the help of a new concept we call knowledge states. Finally, we show a lower bound of [Formula: see text] on the competitiveness for larger cache sizes.


2003 ◽  
Vol 11 (2) ◽  
pp. 105-124 ◽  
Author(s):  
Vishal Aslot ◽  
Rudolf Eigenmann

The state of modern computer systems has evolved to allow easy access to multiprocessor systems by supporting multiple processors on a single physical package. As the multiprocessor hardware evolves, new ways of programming it are also developed. Some inventions may merely be adopting and standardizing the older paradigms. One such evolving standard for programming shared-memory parallel computers is the OpenMP API. The Standard Performance Evaluation Corporation (SPEC) has created a suite of parallel programs called SPEC OMP to compare and evaluate modern shared-memory multiprocessor systems using the OpenMP standard. We have studied these benchmarks in detail to understand their performance on a modern architecture. In this paper, we present detailed measurements of the benchmarks. We organize, summarize, and display our measurements using a Quantitative Model. We present a detailed discussion and derivation of the model. Also, we discuss the important loops in the SPEC OMPM2001 benchmarks and the reasons for less than ideal speedup on our platform.


Sign in / Sign up

Export Citation Format

Share Document