time task
Recently Published Documents


TOTAL DOCUMENTS

1058
(FIVE YEARS 133)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Lidwien C.E. Veugen ◽  
A. John Van Opstal ◽  
Marc M. van Wanrooij

We tested whether joint spectrotemporal sensitivity follows from spectrotemporal separability for normal-hearing conditions and for impaired-hearing simulations. In a manual reaction-time task, normal-hearing listeners had to detect the onset of a ripple (with density between 0-8 cycles/octave and a fixed modulation depth of 50%), that moved up or down the log-frequency axis at constant velocity (between 0-64 Hz), in an otherwise-unmodulated broadband white-noise. Spectral and temporal modulations elicited band-pass filtered sensitivity characteristics, with fastest detection rates around 1 cycle/oct and 32 Hz for normal-hearing conditions. These results closely resemble data from other studies that typically used the modulation-depth threshold as a sensitivity measure for spectral-temporal modulations. To simulate hearing-impairment, stimuli were processed with a 6-channel cochlear-implant vocoder, and a hearing-aid simulation that introduced spectral smearing and low-pass filtering. Reaction times were always much slower compared to normal hearing, especially for the highest spectral densities. Binaural performance was predicted well by the benchmark race model of statistical facilitation of independent monaural channels. For the impaired-hearing simulations this implied a "best-of-both-worlds" principle in which the listeners relied on the hearing-aid ear to detect spectral modulations, and on the cochlear-implant ear for temporal-modulation detection. Although singular-value decomposition indicated that the joint spectrotemporal sensitivity matrix could be largely reconstructed from independent temporal and spectral sensitivity functions, in line with time-spectrum separability, a significant inseparable spectral-temporal interaction was present in all hearing conditions. These results imply that the reaction-time task yields a solid and effective objective measure of acoustic spectrotemporal modulation sensitivity, which may also be applicable to hearing-impaired individuals.


2022 ◽  
Vol 15 ◽  
Author(s):  
Kevin J. Norman ◽  
Julia Bateh ◽  
Priscilla Maccario ◽  
Christina Cho ◽  
Keaven Caro ◽  
...  

Top-down attention is a dynamic cognitive process that facilitates the detection of the task-relevant stimuli from our complex sensory environment. A neural mechanism capable of deployment under specific task-demand conditions would be crucial to efficiently control attentional processes and improve promote goal-directed attention performance during fluctuating attentional demand. Previous studies have shown that frontal top-down neurons projecting from the anterior cingulate area (ACA) to the visual cortex (VIS; ACAVIS) are required for visual attentional behavior during the 5-choice serial reaction time task (5CSRTT) in mice. However, it is unknown whether the contribution of these projecting neurons is dependent on the extent of task demand. Here, we first examined how behavior outcomes depend on the number of locations for mice to pay attention and touch for successful performance, and found that the 2-choice serial reaction time task (2CSRTT) is less task demanding than the 5CSRTT. We then employed optogenetics to demonstrate that suppression ACAVIS projections immediately before stimulus presentation has no effect during the 2CSRTT in contrast to the impaired performance during the 5CSRTT. These results suggest that ACAVIS projections are necessary when task demand is high, but once a task demand is lowered, ACAVIS neuron activity becomes dispensable to adjust attentional performance. These findings support a model that the frontal-sensory ACAVIS projection regulates visual attention behavior during specific high task demand conditions, pointing to a flexible circuit-based mechanism for promoting attentional behavior.


2022 ◽  
Vol 15 ◽  
Author(s):  
Ru Ma ◽  
Xinzhao Xia ◽  
Wei Zhang ◽  
Zhuo Lu ◽  
Qianying Wu ◽  
...  

Background: Temporal interference (TI) stimulation is a new technique of non-invasive brain stimulation. Envelope-modulated waveforms with two high-frequency carriers can activate neurons in target brain regions without stimulating the overlying cortex, which has been validated in mouse brains. However, whether TI stimulation can work on the human brain has not been elucidated.Objective: To assess the effectiveness of the envelope-modulated waveform of TI stimulation on the human primary motor cortex (M1).Methods: Participants attended three sessions of 30-min TI stimulation during a random reaction time task (RRTT) or a serial reaction time task (SRTT). Motor cortex excitability was measured before and after TI stimulation.Results: In the RRTT experiment, only 70 Hz TI stimulation had a promoting effect on the reaction time (RT) performance and excitability of the motor cortex compared to sham stimulation. Meanwhile, compared with the sham condition, only 20 Hz TI stimulation significantly facilitated motor learning in the SRTT experiment, which was significantly positively correlated with the increase in motor evoked potential.Conclusion: These results indicate that the envelope-modulated waveform of TI stimulation has a significant promoting effect on human motor functions, experimentally suggesting the effectiveness of TI stimulation in humans for the first time and paving the way for further explorations.


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Suji Yoon ◽  
Heejin Park ◽  
Kyungwoon Cho ◽  
Hyokyung Bahn

2022 ◽  
pp. 245-261
Author(s):  
Geetha J. J. ◽  
Jaya Lakshmi D. S. ◽  
Keerthana Ningaraju L. N.

Distributed caching is one such system used by dynamic high-traffic websites to process the incoming user requests to perform the required tasks in an efficient way. Distributed caching is currently employing hashing algorithm in order to serve its purpose. A significant drawback of hashing in this circumstance is the addition of new servers that would result in a change in the previous hashing method (rehashing), hence, goes into a rigmarole. Thus, we need an effective algorithm to address the problem. This technique has served as a solution for distributed and rehashing problems. Most of upcoming internet of things will have to be latency aware and will not afford the data transmission and computation time in the cloud servers. The real-time processing in proximal distance device would be much needed. Hence, the authors aim to employ a real-time task scheduling algorithm. Computations referring to the user requests that are to be handled by the servers can be efficiently handled by consistent hashing algorithms.


2021 ◽  
Author(s):  
Breanne Christie ◽  
Luke E. Osborn ◽  
David P. McMullen ◽  
Ambarish S. Pawar ◽  
Sliman J. Bensmaia ◽  
...  

AbstractBackgroundElectrically stimulating the somatosensory cortex can partially restore the sense of touch. Though this technique bypasses much of the neuroaxis, prior studies with non-human primates have found that conscious detection of touch elicited by intracortical microstimulation (ICMS) lags behind the detection of vibration applied to the skin. These findings may have been influenced by a mismatch in stimulus intensity; typically, vibration is perceived as more intense than ICMS, which can significantly impact temporal perception.ObjectiveThe goal of this study was to evaluate the relative latency at which intensity-matched vibration and ICMS are perceived in a human subject.MethodsA human participant implanted with microelectrode arrays in somatosensory cortex performed a reaction time task and a temporal order judgment (TOJ) task. In the reaction time task, the participant was presented with ICMS or vibration and verbal response times were obtained. In the TOJ task, the participant was sequentially presented with a pair of stimuli – ICMS followed by vibration or vice versa – and reported which stimulus occurred first.ResultsWhen ICMS and vibration were matched in perceived intensity, the reaction time to vibration was ∼50 ms faster than ICMS. However, in the TOJ task, ICMS and vibratory sensations arose at comparable latencies, with points of subjective simultaneity that were not significantly different from zero.ConclusionsBecause the perception of ICMS is slower than that of intensity-matched vibration, it may be necessary to stimulate at stronger ICMS intensities (thus decreasing reaction time) when incorporating ICMS sensory feedback into neural prostheses.


2021 ◽  
Vol 4 (11) ◽  
pp. 139-146
Author(s):  
Fatemeh Shafiei ◽  
Habibollah Ghassemzadeh

The modality of apprehension and processing of metaphorical expressions in comparison with non-metaphorical ones has hitherto captivated numerous researchers in manifold fields of study, such as linguistics, psychology, and cognitive sciences. More specially, metaphors used in a one-sentence paragraph have been the subjects of many studies. However, cognitive functions of structural metaphors haven’t been entirely noteworthy in contrast with non-metaphorical expressions employed in textual context. In this study, the interrelationship between memory and conceptual metaphor in significant cognitive processes has been examined in a textual context. In this respect, the hypothesis, that conceptual metaphor as a value can assist with the recognition and recollection process and incorporate the quintessence of our cerebrations, has been put to test. To evaluate this assumption, the reaction time task is used. Each testable case has been subjected to analysis within two analogous contexts, in a metaphorical and non-metaphorical manner. Afterwards, terms were displayed, and the subjects needed to determine as swiftly as possible whether these vocabularies were exemplified or not. The results indicated that the terms pertaining to the schema and other terms included in metaphorical context would be processed faster than the one with non-metaphorical context. With regard to the obtained data, it seems that the conceptual metaphor generates semantic networks in the mind which will be more accessible to memory upon information retrieval.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-25
Author(s):  
Shounak Chakraborty ◽  
Sangeet Saha ◽  
Magnus Själander ◽  
Klaus Mcdonald-Maier

Achieving high result-accuracy in approximate computing (AC) based real-time applications without violating power constraints of the underlying hardware is a challenging problem. Execution of such AC real-time tasks can be divided into the execution of the mandatory part to obtain a result of acceptable quality, followed by a partial/complete execution of the optional part to improve accuracy of the initially obtained result within the given time-limit. However, enhancing result-accuracy at the cost of increased execution length might lead to deadline violations with higher energy usage. We propose Prepare , a novel hybrid offline-online approximate real-time task-scheduling approach, that first schedules AC-based tasks and determines operational processing speeds for each individual task constrained by system-wide power limit, deadline, and task-dependency. At runtime, by employing fine-grained DVFS, the energy-adaptive processing speed governing mechanism of Prepare reduces processing speed during each last level cache miss induced stall and scales up the processing speed once the stall finishes to a higher value than the predetermined one. To ensure on-chip thermal safety, this higher processing speed is maintained only for a short time-span after each stall, however, this reduces execution times of the individual task and generates slacks. Prepare exploits the slacks either to enhance result-accuracy of the tasks, or to improve thermal and energy efficiency of the underlying hardware, or both. With a 70 - 80% workload, Prepare offers 75% result-accuracy with its constrained scheduling, which is enhanced by 5.3% for our benchmark based evaluation of the online energy-adaptive mechanism on a 4-core based homogeneous chip multi-processor, while meeting the deadline constraint. Overall, while maintaining runtime thermal safety, Prepare reduces peak temperature by up to 8.6 °C for our baseline system. Our empirical evaluation shows that constrained scheduling of Prepare outperforms a state-of-the-art scheduling policy, whereas our runtime energy-adaptive mechanism surpasses two current DVFS based thermal management techniques.


Sign in / Sign up

Export Citation Format

Share Document