A Note on the Influence of Copolymer of Na-Methacrylic Acid and Methacrylic Acid Isobutyl Ester on the Physic-Mechanical Properties of Cement Systems

2020 ◽  
Vol 7 (4) ◽  
pp. 229-232
Author(s):  
O. A. Karsakova ◽  
M. V. Kuzmin

In this work, photocurable protective coatings based on methacrylic acid esters have been developed and their physical and mechanical properties have been investigated. The photocurable compositions were obtained by mixing at different ratios the following methacrylic acid esters: polyethylene glycol dimethacrylate 400 and triethylene glycol dimethacrylate ether, polyethylene glycol dimethacrylate 400 and oligourethane dimethacrylate, polyethylene glycol dimethacrylate 400 and pentaerythritol tetraacrylate. For the obtained compositions, the viscosity was studied using a Brookfield rotary viscometer. To initiate polymerization, a mixture of initiators was used: benzoyl peroxide and benzoin. Curing of the obtained compositions was carried out under the influence of UV rays for 2-5 minutes. For photo-cured compositions, their physical and mechanical properties have been studied. It was found that the composition based on polyethylene glycol dimethacrylate modified with triethylene glycol dimethacrylate at a ratio of 70:30 has the highest strength.


2021 ◽  
Author(s):  
James Turton ◽  
Stephen Worrall ◽  
Muhamad S. Musa ◽  
Amir H. Milani ◽  
Yichao Yao ◽  
...  

The mechanical properties of these highly stretchable, water deposited elastomers can be tuned by varying MAA content and vinyl functionalisation.


2014 ◽  
Vol 86 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Qixiang Jiang ◽  
Angelika Menner ◽  
Alexander Bismarck

Abstract Emulsion templates containing monomers in both emulsion phases were used to manufacture polystyrene-co-divinylbenzene based polymerized high internal phase emulsions (polyHIPEs) which have been reinforced by poly(methacrylic acid) (polyMAA) and poly(dimethyl aminoethyl methacrylate) (polyDMAEMA). The morphology of the hydrogel-filled polyHIPEs is affected by the hydrogels synthesized in the aqueous emulsion phase. The pore structure of polyMAA-filled polyHIPEs is highly interconnected indicating the formation of a methacrylic acid-co-styrene copolymer at the oil/water interface of the emulsion templates during synthesis. However, polyDMAEMA-filled polyHIPEs are predominately closed celled and the pore walls are covered by grafted hydrogel. The ability of the hydrogel-filled polyHIPEs to absorb water decreased with increasing crosslinking density of the hydrogels. The dry hydrogel reinforced the polyHIPE scaffolds possessed higher elastic moduli and crush strengths than the control polyHIPEs. The reinforcing ability of the dry hydrogels was further enhanced by increasing their degree of crosslinking. However, the reinforcement could be “switched off” simply by hydrating the hydrogels. The switchable mechanical properties of the hydrogel-filled polyHIPEs could potentially be utilized in smart humidity sensor technology.


Sign in / Sign up

Export Citation Format

Share Document