acrylic ester
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 8)

H-INDEX

21
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 249
Author(s):  
Weronika Kujawa ◽  
Iwona Tarach ◽  
Ewa Olewnik-Kruszkowska ◽  
Anna Rudawska

The materials based on concrete with an addition of rubber are well-known. The interaction between concrete components and rubber particles is in the majority cases insufficient. For this reason, different substances are introduced into concrete-rubber systems. The aim of this paper is to establish the influence of five different polymer additives, i.e., 1. an aqueous dispersion of a styrene-acrylic ester copolymer (silanised) (ASS), 2. water dispersion of styrene-acrylic copolymer (AS), 3. anionic copolymer of acrylic acid ester and styrene in the form of powder (AS.RDP), 4. water polymer dispersion produced from the vinyl acetate and ethylene monomers (EVA), 5. copolymer powder of vinyl acetate and ethylene (EVA.RDP)) on the properties of the self-leveling rubberised concrete. Scanning electron microscopy has allowed to establish the interaction between the cement paste and rubber aggregates. Moreover, the compressive strength and flexural strength of the studied materials were evaluated. The results indicate that the mechanical properties depend extensively on the type as well as the amount of the polymer additive introduced into the system.


2021 ◽  
pp. 002199832110370
Author(s):  
Chia-Fang Lee ◽  
Chin-Wen Chen ◽  
Fu-Sheng Chuang ◽  
Syang-Peng Rwei

Multi-wall carbon nanotubes (MWCNTs) at 0.5 wt% to 2 wt% proportions were added to thermoplastic polyurethane (TPU) synthesized with polycarbonatediol (PCDL), 4,4’-methylene diphenyl diisocyanate (MDI), and 1,3-butanediol(1,3-BDO). To formulate a new TPU-MWCNT nanocomposite, the composite was melt-blended with a twin-screw extruder. To ensure the even dispersion of MWCNTs, dispersant (ethylene acrylic ester terpolymer; Lotader AX8900) of equal weight proportion to the added MWCNTs was also added during the blending process. Studies on the mechanical and thermal properties, and melt flow experiments and phase analysis of TPU-MWCNT nanocomposites, these nanocomposites exhibit higher tensile strength and elongation at break than neat TPU. TPU-MWCNT nanocomposites with higher MWCNT content possess higher glass-transition temperature (Tg), a lower melt index, and greater hardness. Relative to neat TPU, TPU-MWCNT nanocomposites exhibit favorable mechanical properties. By adding MWCNTs, the tensile strength of the nanocomposites increased from 7.59 MPa to 21.52 MPa, and Shore A hardness increased from 65 to 81. Additionally, TPU-MWCNT nanocomposites with MWCNTs had lower resistance coefficients; the resistance coefficient decreased from 4.97 × 1011 Ω/sq to 2.53 × 104 Ω/sq after adding MWCNTs, indicating a conductive polymer material. Finally, the internal structure of the TPU-MWCNT nanocomposites was examined under transmission electron microscopy. When 1.5 wt% or 2 wt% of MWCNTs and dispersant were added to TPU, the MWCNTs were evenly dispersed, with increased electrical conductivity and mechanical properties. The new material is applicable in the electronics industry as a conductive polymer with high stiffness.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3112-3124
Author(s):  
Dongyan Zhou ◽  
Mingwei Di

A design for strap lap bond joints of wood powder/polyethylene composites (WP/PE) was proposed. The effects of combined treatment on surface properties of WP/PE and failure modes of WP/PE bonded by epoxy and acrylic ester were investigated. A finite element model of strap lap bond joints of WP/PE was established based on the elastoplasticity finite element method, and the effects of lap length and adhesive (epoxy and acrylic ester) on stress distributions and comprehensive displacements of strap lap bond joints of WP/PE were investigated. The results demonstrated that the bonding interface roughness of WP/PE was enhanced by the combined surface treatment. Active oxygen-containing functional groups were introduced to the sample surface. The finite element simulation results revealed that the Mises equivalent stress peaks and comprehensive displacements of strap lap bond joints were concentrated in lap zone ends and board connections, the stress distribution was independent of the lap length, and the Mises equivalent stress peaks and comprehensive displacements were independent of the adhesive.


2018 ◽  
Vol 32 (4) ◽  
pp. e4244 ◽  
Author(s):  
Tao Zhang ◽  
Xuejie Yue ◽  
Dongya Yang ◽  
Qing Guo ◽  
Fengxian Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document