Effect of degree of saturation on thermal conductivity of CLSM used for a horizontal ground coupled heat pump system

2016 ◽  
pp. 617-622
Author(s):  
T Do ◽  
Y Kim ◽  
C Lee ◽  
M Dang
1986 ◽  
Vol 108 (3) ◽  
pp. 185-191 ◽  
Author(s):  
F. Conlin ◽  
W. S. Johnson ◽  
S. Wix

The ground-coupled heat pump system in TECH House I at the University of Tennessee has been modelled using TRNSYS/GROCS and the results have been compared with actual performance data for both the 1982–83 heating season and the 1983 cooling season. Hourly measurements of various ground temperatures, conditioned space temperatures, power requirements and heat transferred to or from the ground and the conditioned space were made. Results indicate that the model prediction is within 5 percent of the measured seasonal performance factor for both the summer and winter season. Parametric studies were undertaken to examine the effect of ground coil length, soil thermal conductivity, and the heat pump performance rating on the overall seasonal performance of the system. Overall performance is shown to increase with improved performance and increased soil thermal conductivity while the coil length shows an optimum value due to the increase of pumping power with length.


2012 ◽  
Vol 19 (3) ◽  
pp. 664-668
Author(s):  
Min Zheng ◽  
Bai-yi Li ◽  
Zheng-yong Qiao

2009 ◽  
Vol 34 (3) ◽  
pp. 578-582 ◽  
Author(s):  
Yujin Hwang ◽  
Jae-Keun Lee ◽  
Young-Man Jeong ◽  
Kyung-Min Koo ◽  
Dong-Hyuk Lee ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 870 ◽  
Author(s):  
José Villarino ◽  
Alberto Villarino ◽  
I. de Arteaga ◽  
Roberto Quinteros ◽  
Alejandro Alañón

This paper presents an analysis of economic and energy between a ground-coupled heat pump system and other available technologies, such as natural gas, biomass, and diesel, providing heating, ventilation, and air conditioning to an office building. All the proposed systems are capable of reaching temperatures of 22 °C/25 °C in heating and cooling modes. EnergyPlus software was used to develop a simulation model and carry out the validation process. The first objective of the paper is the validation of the numerical model developed in EnergyPlus with the experimental results collected from the monitored building to evaluate the system in other operating conditions and to compare it with other available technologies. The second aim of the study is the assessment of the position of the low enthalpy geothermal system proposed versus the rest of the systems, from energy, economic, and environmental aspects. In addition, the annual heating and cooling seasonal energy efficiency ratio (COPsys) of the ground-coupled heat pump (GCHP) shown is higher than the others. The economic results determine a period between 6 and 9 years for the proposed GCHP system to have lower economic cost than the rest of the systems. The results obtained determine that the GCHP proposed system can satisfy the thermal demand in heating and cooling conditions, with optimal environmental values and economic viability.


Sign in / Sign up

Export Citation Format

Share Document