Power-law divergent heat conductivity in one-dimensional momentum-conserving nonlinear lattices

2011 ◽  
Vol 93 (5) ◽  
pp. 54002 ◽  
Author(s):  
Lei Wang ◽  
Ting Wang
2008 ◽  
Vol 22 (22) ◽  
pp. 3901-3914 ◽  
Author(s):  
JUN-WEN MAO ◽  
YOU-QUAN LI ◽  
LING-YUN DENG

We investigate the heat conduction in a modified Lorentz gas with freely rotating disks periodically placed along one-dimensional channel. The heat conductivity is dependent on the moment of inertia η of the disks, with a power-law decay when η > 1. By plotting the Poincaré surface of the section, we observe a contraction of phase space over the range of η > 1, which is sensitive to the initial condition. We find that the power-law decay of the heat conductivity is relevant to the mixing phase space. As a possible application, we model the heterostructure by connecting the segments of different η, and predict the analytical results of the temperature profiles and the heat conductivity, which are in good agreement with the numerical ones.


1989 ◽  
Vol 56 (1) ◽  
pp. 146-148 ◽  
Author(s):  
H. P. W. Gottlieb

Forms of the variable-heat-conductivity coefficient function in the one-dimensional heat equation are determined which yield a standard harmonic eigenvalue sequence as in the case of homogeneity. The continuous case is found to correspond to a four-thirds power law dependence on coordinate. For the stepped case, the condition on the ratio of segmental heat conductivities in terms of the junction location is presented.


1991 ◽  
Vol 56 (2) ◽  
pp. 334-343
Author(s):  
Ondřej Wein

Analytical solutions are given to a class of unsteady one-dimensional convective-diffusion problems assuming power-law velocity profiles close to the transport-active surface.


2015 ◽  
Vol 114 (12) ◽  
Author(s):  
A. S. Campbell ◽  
D. M. Gangardt ◽  
K. V. Kheruntsyan

2006 ◽  
Vol 73 (6) ◽  
Author(s):  
Trieu Mai ◽  
Onuttom Narayan

2013 ◽  
Vol 88 (13) ◽  
Author(s):  
Alejandro M. Lobos ◽  
Masaki Tezuka ◽  
Antonio M. García-García

2021 ◽  
Vol 63 (7) ◽  
pp. 975
Author(s):  
А.П. Клинов ◽  
М.А. Мазо ◽  
В.В. Смирнов

The thermal conductivity of a one-dimensional chain of rotators with a double-barrier interaction potential of nearest neighbors has been studied numerically. We show that the height of the "internal" barrier, which separates topologically nonequivalent degenerate states, significantly affects the temperature dependence of the heat conductivity of the system. The small height of this barrier leads to the dominant contribution of the non-linear normal modes at low temperatures. In such a case the coefficient of thermal conductivity turns out to be the risen function of the temperature. The growth of the coefficient is limited by local fluctuations corresponding to jumps over the barriers. At higher values of the internal barrier height, dependence of the heat conductivity on temperature is similar to that of classical rotators.


2015 ◽  
Vol 1 (4) ◽  
pp. e1400222 ◽  
Author(s):  
Pierre-François Duc ◽  
Michel Savard ◽  
Matei Petrescu ◽  
Bernd Rosenow ◽  
Adrian Del Maestro ◽  
...  

In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of 4He belongs to the same three-dimensional (3D) O(2) universality class as the onset of ferromagnetism in a lattice of classical spins with XY symmetry. Below the transition, the superfluid density ρs and superfluid velocity vs increase as a power law of temperature described by a universal critical exponent that is constrained to be identical by scale invariance. As the dimensionality is reduced toward 1D, it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single 30-nm-long nanopores with radii ranging down from 20 to 3 nm. As the pore size is reduced toward the 1D limit, we observe the following: (i) a suppression of the pressure dependence of the superfluid velocity; (ii) a temperature dependence of vs that surprisingly can be well-fitted by a power law with a single exponent over a broad range of temperatures; and (iii) decreasing critical velocities as a function of decreasing radius for channel sizes below R ≃ 20 nm, in stark contrast with what is observed in micrometer-sized channels. We interpret these deviations from bulk behavior as signaling the crossover to a quasi-1D state, whereby the size of a critical topological defect is cut off by the channel radius.


Sign in / Sign up

Export Citation Format

Share Document