scholarly journals Теплопроводность цепочки ротаторов с двухбарьерным потенциалом взаимодействия

2021 ◽  
Vol 63 (7) ◽  
pp. 975
Author(s):  
А.П. Клинов ◽  
М.А. Мазо ◽  
В.В. Смирнов

The thermal conductivity of a one-dimensional chain of rotators with a double-barrier interaction potential of nearest neighbors has been studied numerically. We show that the height of the "internal" barrier, which separates topologically nonequivalent degenerate states, significantly affects the temperature dependence of the heat conductivity of the system. The small height of this barrier leads to the dominant contribution of the non-linear normal modes at low temperatures. In such a case the coefficient of thermal conductivity turns out to be the risen function of the temperature. The growth of the coefficient is limited by local fluctuations corresponding to jumps over the barriers. At higher values of the internal barrier height, dependence of the heat conductivity on temperature is similar to that of classical rotators.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Cletus Matthew Magoda ◽  
Jasson Gryzagoridis ◽  
Kant Kanyarusoke

Purpose The purpose of this paper is to validate an assumption of what to use as an effective (steady state) heat transfer coefficient of thermal conductivity for the honeycomb core sandwiched by Fiberglass face sheets composite. A one-dimensional model based on Fourier law is developed. The results are validated experimentally. Design/methodology/approach The results were obtained from the one-dimensional mathematical model of an overall or effective heat conductivity of the Honeycomb composite panel. These results were validated experimentally by applying heat flux on the specimen under controlled environment. The surface temperatures at different voltages were recorded and analysed. The skin of the sandwich composite material used in the investigation was Fiberglass sheet with a thickness of 0.5 mm at the bottom and 1.0 mm at the top surface. Both skins have a stacking sequence of zero degrees. Due to the presence of air cells in the core (Honeycomb), the model considers the conduction, convection and radiation heat transfer, across the thickness of the panel, combined as an effective conduction mode, whose value may be predicted by using the coefficient of thermal conductivity of the air based on the average temperature difference between the two skins. The experimental results for the heat transfer through the thickness of the panel provide validation of this assumption/prediction. Both infrared thermography and conventional temperature measurement techniques (thermocouples) were used to collect the data. Findings The heat transfer experiment and mathematical modeling were conducted. The data obtained were analyzed, and it was found that the effective thermal conductivity was temperature-dependent as expected. The effective thermal conductivity of the honeycomb panel was close to that of air, and its value could be predicted if the panel surface temperatures were known. It was also found that as temperature raised the variation between experimental and predicted effective air conduction raised up. This is because there was an increase in molecular diffusion and vibration. Therefore, the convection heat transfer increased at high temperatures and the air became an insulator. Originality/value Honeycomb composite panels have excellent physical and thermal properties that influence their performance. This study provides an appropriate method in determining thermal conductivity, which is one of the critical thermal properties of porous composite material. This paper also gives useful and practical data to industries that use or manufacture honeycomb composite panels.


2018 ◽  
Vol 35 (4) ◽  
pp. 717-724
Author(s):  
B. Andriyevsky ◽  
W. Janke ◽  
V.Yo. Stadnyk ◽  
M.O. Romanyuk

Abstract An original approach to the theoretical calculations of the heat conductivity of crystals based on the first principles molecular dynamics has been proposed. The proposed approach exploits the kinetic theory of phonon heat conductivity and permits calculating several material properties at certain temperature: specific heat, elastic constant, acoustic velocity, mean phonon scattering time and coefficient of thermal conductivity. The method has been applied to silicon and phosphorus doped silicon crystals and the obtained results have been found to be in satisfactory agreement with corresponding experimental data. The proposed computation technique may be applied to the calculations of heat conductivity of pure and doped semiconductors and isolators.


1988 ◽  
Vol 110 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Da Yu Tzou

Stochastic temperature distribution in a solid medium with random heat conductivity is investigated by the method of perturbation. The intrinsic randomness of the thermal conductivity k(x) is considered to be a distribution function with random amplitude in the solid, and several typical stochastic processes are considered in the numerical examples. The formulation used in the present analysis describes a situation that the statistical orders of the random response of the system are the same as those of the intrinsic random excitations, which is characteristic for the problem with extrinsic randomness. The maximum standard deviation of the temperature distribution from the mean value in the solid medium reveals the amount of unexpected energy experienced by the solid continuum, which should be carefully inspected in the thermal-failure design of structures with intrinsic randomness.


1998 ◽  
Vol 43 (3) ◽  
pp. 271-276 ◽  
Author(s):  
S Lepri ◽  
R Livi ◽  
A Politi

2006 ◽  
Vol 73 (6) ◽  
Author(s):  
Trieu Mai ◽  
Onuttom Narayan

Author(s):  
Yener Usul ◽  
Mustafa Özçatalbaş

Abstract Increasing demand for usage of electronics intensely in narrow enclosures necessitates accurate thermal analyses to be performed. Conduction based FEM (Finite Element Method) is a common and practical way to examine the thermal behavior of an electronic system. First step to perform a numerical analysis for any system is to set up the correct analysis model. In this paper, a method for obtaining the coefficient of thermal conductivity and specific heat capacity of a PCB which has generally a complex composite layup structure composed of conductive layers, and dielectric layers. In the study, above mentioned properties are obtained performing a simple nondestructive experiment and a numerical analysis. In the method, a small portion of PCB is sandwiched from one side at certain pressure by jaws. A couple of linear temperature profiles are applied to the jaws successively. Unknown values are tuned in the analysis model until the results of FEM analysis and experiment match. The values for the coefficient of thermal conductivity and specific heat capacity which the experiment and numerical analysis results match can be said to be the actual values. From this point on, the PCB whose thermal properties are determined can be analyzed numerically for any desired geometry and boundary condition.


2018 ◽  
Vol 10 (47) ◽  
pp. 40740-40747 ◽  
Author(s):  
Jie Zhu ◽  
Tianli Feng ◽  
Scott Mills ◽  
Peipei Wang ◽  
Xuewang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document