A perfect probe: Resonance of underdamped scaled Brownian motion

Author(s):  
Yuhui Luo ◽  
Chunhua Zeng ◽  
Baowen Li

Abstract We numerically investigate the resonance of the underdamped scaled Brownian motion in a bistable system for both cases of a single particle and interacting particles. Through the velocity autocorrelation function (VACF) and mean squared displacement (MSD) of a single particle, we find that for the steady state, diffusions are ballistic at short times and then become normal for most of parameter regimes. However, for certain parameter regimes, both VACF and MSD suggest that the transition between superdiffusion and subdiffusion takes place at intermediate times, and diffusion becomes normal at long times. Via the power spectrum density corresponding to the transitions, we find that there exists a nontrivial resonance. For interacting particles, we find that the interaction between the probe particle and other particles can lead to the resonance, too. Thus we theoretically propose the system with the Brownian particle as a probe, which can detect the temperature of the system and identify the number of the particles or the types of different coupling strengths in the system. The probe is potentially useful for detecting microscopic and nanometer-scale particles and for identifying cancer cells or healthy ones.

Soft Matter ◽  
2021 ◽  
Author(s):  
Nicos Makris

Motivated from the central role of the mean-square displacement and its second time-derivative – that is the velocity autocorrelation function in the description of Brownian motion, we revisit the physical meaning of its first time-derivative.


2011 ◽  
Vol 9 (4) ◽  
pp. 959-973 ◽  
Author(s):  
Deming Nie ◽  
Jianzhong Lin

AbstractThe previously developed LB-DF/FD method derived from the lattice Boltzmann method and Direct Forcing/Fictitious Domain method is extended to deal with 3D particle’s Brownian motion. In the model the thermal fluctuations are introduced as random forces and torques acting on the Brownian particle. The hydrodynamic interaction is introduced by directly resolving the fluid motions. A sphere fluctuating in a cubic box with the periodic boundary is considered to validate the present model. By examining the velocity autocorrelation function (VCF) and rotational velocity autocorrelation function (RVCF), it has been found that in addition to the two relaxation times, the mass density ratio should be taken into consideration to check the accuracy and effectiveness of the present model. Furthermore, the fluctuation-dissipation theorem and equipartition theorem have been investigated for a single spherical particle. Finally, a Brownian particle trapped in a harmonic potential has been simulated to further demonstrate the ability of the LB-DF/FD model.


1983 ◽  
Vol 137 ◽  
pp. 217-220 ◽  
Author(s):  
R. Hocquart ◽  
E. J. Hinch

The long-time t−5/2 behaviour of the angular-velocity autocorrelation function is determined by the diffusion of fluid motion to large distances, from where the particle appears a point singularity. From an examination of this flow, the coefficient of t−5/2 can be related to some effective aspect ratios which describe how the particle rotates in a simple shear flow.


Sign in / Sign up

Export Citation Format

Share Document