Simulation of the Proestrous Luteinizing Hormone (LH) Surge After Infusion of LH-Releasing Hormone in Phenobarbital-Blocked Rats

Endocrinology ◽  
1976 ◽  
Vol 98 (2) ◽  
pp. 451-460 ◽  
Author(s):  
CHARLES A. BLAKE
1981 ◽  
Vol 88 (1) ◽  
pp. 17-25 ◽  
Author(s):  
E. M. CONVEY ◽  
J. S. KESNER ◽  
V. PADMANABHAN ◽  
T. D. CARRUTHERS ◽  
T. W. BECK

In ovariectomized heifers, oestradiol decreases concentrations of LH in serum for approximately 12 h after which LH is released in a surge comparable in size and duration to the preovulatory surge. Using this model, we measured LH release induced by LH releasing hormone (LH-RH) from pituitary explants taken from ovariectomized heifers before or after an oestradiol-induced LH surge. These changes were related to changes in LH concentrations in serum and pituitary glands and hypothalamic LH-RH content. Twenty Holstein heifers were randomly assigned to one of four treatment groups to be killed 0, 6, 12, or 24 h after the injection of 500 μg oestradiol-17β. Jugular blood was collected at −2, −1 and 0 h then at intervals of 2 h until slaughter. Pituitary glands were collected and ≃2 mm3 explants were exposed to 4 ng LH-RH/ml medium for 30 min (superfusion) or 4 ng LH-RH/ml medium for 2 h in Erlenmeyer flasks. Levels of LH were measured in the medium. Hypothalami, collected at autopsy, were assayed for LH-RH content. To determine pituitary LH content, an additional 15 ovariectomized heifers were killed, five each at 0, 12 and 24 h after the injection of 500 μg oestradiol. In both groups of heifers, oestradiol reduced serum LH concentrations to ≃ 1 ng/ml, a level which persisted for 12 h, when LH was released in a surge. Pituitary sensitivity to LH-RH was increased at 6 and 12 h after the injection of oestradiol, but was markedly decreased at 24 h, i.e. after the LH surge. Despite this twofold increase in capacity of the pituitary gland to release LH in response to LH-RH, pituitary LH content did not change during 12 h after oestradiol treatment. However, LH content decreased after the LH surge and this decrease was associated with a decrease in pituitary responsiveness to LH-RH. Hypothalamic LH-RH content was not altered by these treatments. We have interpreted our results as evidence that oestradiol exerts a positive feedback effect on the pituitary gland of ovariectomized heifers such that pituitary sensitivity to LH-RH is increased twofold by the time the LH surge is initiated. In addition, oestradiol causes a transitory inhibition of LH-RH release as shown by the fact that serum LH concentrations remained low during the interval from injection of oestradiol until the beginning of the LH surge despite the fact that pituitary sensitivity to LH-RH is increased at this time. Depletion of a readily releasable pool of pituitary LH may be the mechanism by which the LH surge is terminated.


1981 ◽  
Vol 90 (3) ◽  
pp. 345-354 ◽  
Author(s):  
KATHLEEN A. ELIAS ◽  
C. A. BLAKE

Changes at the anterior pituitary and/or hypothalamic levels which result in selective FSH release during late pro-oestrus in the cyclic rat were investigated. The possible involvement of decreasing serum concentrations of oestrogen during pro-oestrus in such changes was studied. Rats were decapitated at 12.00 h on pro-oestrus, before the onset of the LH surge and first phase of FSH release, or at 24.00 h on pro-oestrus, shortly after the onset of the second or selective phase of FSH release. Other rats were given oestrogen (OE2) at 14.00 h and killed at 24.00 h pro-oestrus. Paired hemi-anterior pituitary glands were incubated with vehicle or OE2 with or without synthetic LH-releasing hormone (LH-RH) or hypothalamic acid extracts prepared from rats killed at 12.00 or 24.00 h on pro-oestrus. At 24.00 h pro-oestrus, serum FSH concentration was high while serum LH concentration was low regardless of whether rats were given OE2. Glands collected and incubated at 24.00 h released more FSH and less LH than did glands collected and incubated at 12.00 h pro-oestrus. Administration of OE2 in vivo and/or in vitro did not affect these responses. The increments in LH and FSH release attributed to LH-RH or hypothalamic extracts in the glands incubated at 24.00 h were not different from those of the glands incubated at 12.00 h. Also, the hypothalamic extracts prepared from rats killed at 24.00 h were no more effective than the extracts prepared from rats killed at 12.00 h in releasing LH or FSH from glands incubated at 12.00 or 24.00 h pro-oestrus. Administration of OE2 in vivo caused a small suppression of LH-RH-induced FSH release. We suggest that a change occurs at the level of the anterior pituitary gland during the period of the LH surge and first phase of FSH release to increase basal FSH secretion selectively and cause, at least in part, the second phase of increased serum FSH. This change is not mediated by a decrease in serum oestrogen concentration. We failed to observe any evidence that LH-RH causes preferential FSH release during late pro-oestrus or that a hypothalamic peptide with a preferential FSH releasing ability is involved in FSH release at this time.


Sign in / Sign up

Export Citation Format

Share Document