scholarly journals Familial Combined Pituitary Hormone Deficiency due to a Novel Mutation R99Q in the Hot Spot Region of Prophet of Pit-1 Presenting as Constitutional Growth Delay

2003 ◽  
Vol 88 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Teresa C. Vieira ◽  
Magnus R. Dias da Silva ◽  
Janete M. Cerutti ◽  
Elisa Brunner ◽  
Mariana Borges ◽  
...  
2019 ◽  
Vol 20 (8) ◽  
pp. 1875 ◽  
Author(s):  
Laura Penta ◽  
Carla Bizzarri ◽  
Michela Panichi ◽  
Antonio Novelli ◽  
Francesca Romana Lepri ◽  
...  

Growth hormone deficiency (GHD) can be present from the neonatal period to adulthood and can be the result of congenital or acquired insults. In addition, GHD can be classified into two types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). CPHD is a disorder characterized by impaired production of two or more anterior and/or posterior pituitary hormones. Many genes implicated in CPHD remain to be identified. Better genetic characterization will provide more information about the disorder and result in important genetic counselling because a number of patients with hypopituitarism represent familial cases. To date, PROP1 mutations represent the most common known genetic cause of CPHD both in sporadic and familial cases. We report a novel mutation in the PROP1 gene in an infant with CPHD and an enlarged pituitary gland. Close long-term follow-up will reveal other possible hormonal defects and pituitary involution.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 1069-1069 ◽  
Author(s):  
Berit Kriström ◽  
Anna-Maija Zdunek ◽  
Anders Rydh ◽  
Håkan Jonsson ◽  
Petra Sehlin ◽  
...  

Abstract Context: The LHX3 LIM-homeodomain transcription factor gene, found in both man and mouse, is required for development of the pituitary and motor neurons and is also expressed in the auditory system. Objective: The objective of this study was to determine the cause of, and further explore, the phenotype in six patients (aged 6 months to 22 years) with combined pituitary hormone deficiency (CPHD), restricted neck rotation, scoliosis and congenital hearing impairment. Three of the patients also have mild autistic-like behaviour. Design: As patients with CPHD and restricted neck rotation have previously been shown to have mutations in the LHX3 gene, a candidate gene approach was applied and the gene was sequenced. Neck anatomy was explored by computed tomography and magnetic resonance imaging, including three-dimensional reformatting. Results: A novel, recessive, splice-acceptor site mutation was found. The predicted protein encoded by the mutated gene lacks the homeodomain and carboxyl terminus of the normal, functional protein. Genealogical studies revealed a common gene source for all six families dating back to the seventeenth century. Anatomical abnormalities in the occipito–atlanto–axial joints in combination with a basilar impression of the dens axis were found in all patients assessed. Conclusions: This study extends both the mutations known to be responsible for LHX3-associated syndromes and their possible phenotypic consequences. Previously reported traits include CPHD and restricted neck rotation; patients examined in the present study also show a severe hearing defect. Additionally the existence of cervical vertebral malformations are revealed, responsible for the rigid neck and the development of scoliosis.


2005 ◽  
Vol 90 (8) ◽  
pp. 4762-4770 ◽  
Author(s):  
James P. G. Turton ◽  
Rachel Reynaud ◽  
Ameeta Mehta ◽  
John Torpiano ◽  
Alexandru Saveanu ◽  
...  

Context: Mutations within the gene encoding the pituitary-specific transcription factor POU1F1 are associated with combined pituitary hormone deficiency (CPHD). Most of the affected individuals manifest GH, prolactin, and TSH deficiency. Objective: We have now screened 129 individuals with CPHD and isolated GH deficiency for mutations within POU1F1. Results: Causative mutations were identified in 10 of 129 individuals (7.8%). Of these, five patients harbored the dominant negative R271W mutation, which is a well-recognized mutational hot spot. We have also identified a second frequently occurring mutation, E230K, which appears to be common in Maltese patients. Additionally, we describe two novel mutations within POU1F1, an insertion of a single base pair (ins778A) and a missense mutation (R172Q). Functional studies have revealed that POU1F1 (E230K) is associated with a reduction in transactivation, although DNA-binding affinity is similar to the wild-type protein. On the other hand, POU1F1 (R172Q) is associated with a reduction in DNA binding and transactivation, whereas POU1F1 (ins778A) is associated with loss of DNA binding and a reduction in transactivation. Conclusions: Our data suggest that the phenotype associated with POU1F1 mutations may be more variable, with the occasional preservation of TSH secretion. Additionally, our data revealed POU1F1 mutations in three patients who were diagnosed as having ACTH deficiency but who, on further evaluation, were found to have normal cortisol secretion. Hence, elucidation of the genotype led to further evaluation of the phenotype, with the cessation of cortisol replacement that had been commenced unnecessarily. These data reflect the importance of mutational analysis in patients with CPHD.


Sign in / Sign up

Export Citation Format

Share Document