STN-DBS ACTIVATES THE TARGET AREA IN PARKINSON DISEASE

Neurology ◽  
2009 ◽  
Vol 73 (4) ◽  
pp. 327-328 ◽  
Author(s):  
E. B. Montgomery ◽  
R. Hilker
Neurology ◽  
2008 ◽  
Vol 71 (10) ◽  
pp. 708-713 ◽  
Author(s):  
R. Hilker ◽  
J. Voges ◽  
T. Weber ◽  
L. W. Kracht ◽  
J. Roggendorf ◽  
...  

Neurosurgery ◽  
2015 ◽  
Vol 76 (6) ◽  
pp. 756-765 ◽  
Author(s):  
Srivatsan Pallavaram ◽  
Pierre-François D'Haese ◽  
Wendell Lake ◽  
Peter E. Konrad ◽  
Benoit M. Dawant ◽  
...  

Abstract BACKGROUND: Finding the optimal location for the implantation of the electrode in deep brain stimulation (DBS) surgery is crucial for maximizing the therapeutic benefit to the patient. Such targeting is challenging for several reasons, including anatomic variability between patients as well as the lack of consensus about the location of the optimal target. OBJECTIVE: To compare the performance of popular manual targeting methods against a fully automatic nonrigid image registration-based approach. METHODS: In 71 Parkinson disease subthalamic nucleus (STN)-DBS implantations, an experienced functional neurosurgeon selected the target manually using 3 different approaches: indirect targeting using standard stereotactic coordinates, direct targeting based on the patient magnetic resonance imaging, and indirect targeting relative to the red nucleus. Targets were also automatically predicted by using a leave-one-out approach to populate the CranialVault atlas with the use of nonrigid image registration. The different targeting methods were compared against the location of the final active contact, determined through iterative clinical programming in each individual patient. RESULTS: Targeting by using standard stereotactic coordinates corresponding to the center of the motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting (3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red nucleus-based targeting (2.75 mm), and nonrigid image registration-based automatic predictions using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller variance than all manual approaches. CONCLUSION: Fully automatic targeting based on nonrigid image registration with the use of the CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS.


Neurology ◽  
2009 ◽  
Vol 72 (8) ◽  
pp. 770-771 ◽  
Author(s):  
H. Brozova ◽  
I. Barnaure ◽  
R. L. Alterman ◽  
M. Tagliati ◽  
C. Moreau ◽  
...  

2018 ◽  
Vol 17 (3) ◽  
pp. 239-246 ◽  
Author(s):  
Tatsuya Sasaki ◽  
Ken Kuwahara ◽  
Ittetsu Kin ◽  
Mihoko Okazaki ◽  
Susumu Sasada ◽  
...  

Abstract BACKGROUND Details of the somatotopy within the subthalamic nucleus (STN) are still poorly understood; however, the STN is a common target of deep brain stimulation (DBS) for Parkinson disease. OBJECTIVE To examine somatotopic organization within the STN and identify optimal stimulation sites from 77 surgical cases with microelectrode recording. METHODS STN-DBS was performed for 77 patients with Parkinson disease between 2010 and 2014. We performed passive movements of each joint and captured single neuronal activities to identify movement-related cells (MRCs). The sites of MRCs and active contacts were determined by measuring their distances from the first contact of DBS electrode. Their positional correlations were directly and indirectly analyzed. RESULTS The number of obtained MRCs was 264, of which 151 responded to multiple joints. The average x-, y-, and z-coordinates of the cells of the upper and lower limbs from the midcommisural point were 13.1 ± 1.1 and 12.7 ± 1.2, 0.22 ± 1.3 and −0.45 ± 1.5, and −2.5 ± 1.1 and −3.0 ± 1.4 mm, respectively. Most MRCs were distributed in the upper third of the STN, in its superior, lateral, and posterior regions, along the DBS electrode routes. Active contacts were observed to lie slightly inferior, medial, and posterior to the average MRC position. CONCLUSION Somatotopic organization of the STN was easier to observe in the present study than in previous studies. Optimal stimulation sites were located inferior, medial, and posterior to the average MRC location. The sites may correspond to associative or motor parts through which fibers from the supplementary motor area pass.


2016 ◽  
Vol 126 (6) ◽  
pp. 2017-2027 ◽  
Author(s):  
Albert J. Fenoy ◽  
Monica A. McHenry ◽  
Mya C. Schiess

OBJECTIVEPatients with Parkinson disease (PD) who undergo subthalamic nucleus (STN) deep brain stimulation (DBS) often develop a deterioration in speech performance, but there is no clear consensus on the specific effects seen or the mechanism involved and little description of the impact of DBS on conversational speech. Furthermore, there has been no fiber tract connectivity analysis to identify the structures potentially modulated by DBS to cause such deficits. The main objective of this study was to quantify spontaneous speech performance and identify potential involvement of the dentatorubrothalamic tract (DRTt) in patients who underwent STN DBS, because this tract has been implicated in speech deterioration.METHODSSpontaneous speech samples were obtained with STN DBS in both on and off modes in 35 patients with PD and assessed across multiple domains. Diffusion tensor imaging tractography seeded from the therapeutic DBS contacts was performed to identify the fiber tracts involved and, specifically, the DRTt. The position of active electrode contacts was assessed relative to that of the STN.RESULTSFifteen patients with akinetic-rigid (AR) PD and 20 with tremor-dominant (TD) PD subtypes were identified. In the AR-PD subgroup of patients, in whom there was DRTt involvement, 71% demonstrated much better overall speech and largely improved or unchanged fluency in the DBS-off condition. In patients with TD PD with DRTt involvement, 50% demonstrated better overall speech in the off condition, and equivocal results regarding improved or worsened fluency were found. When there was minimal DRTt involvement, 75% of patients with AR PD had better overall speech in the DBS-on condition and better or minimal fluency changes. Similarly, 83% of patients with TD PD with minimal DRTt involvement had better or minimal overall speech and fluency changes in the on condition. More medially placed left electrode contacts were associated with more DRTt involvement in 77% of patients (10 of 13).CONCLUSIONSTo the authors' knowledge, this is the first study to have investigated a specific fiber tract involved in STN DBS in different subtypes of PD relative to its impact on spontaneous speech. At optimal therapeutic programming of STN DBS, overall spontaneous speech and fluency were affected more negatively in patients with AR PD than in those with TD PD when there was DRTt involvement. After fiber tract analysis and modeling, it was found that medially positioned left electrode contacts more often involved fibers of the DRTt. If possible, avoidance of the DRTt by using active electrode contacts that are positioned less medially, specifically in patients with AR PD, might result in less speech deterioration.


2022 ◽  
Author(s):  
Gian Pal ◽  
Graziella Mangone ◽  
Emily J. Hill ◽  
Bichun Ouyang ◽  
Yuanqing Liu ◽  
...  

Neurosurgery ◽  
2019 ◽  
Vol 85 (2) ◽  
pp. E314-E321 ◽  
Author(s):  
Robert C Nickl ◽  
Martin M Reich ◽  
Nicoló Gabriele Pozzi ◽  
Patrick Fricke ◽  
Florian Lange ◽  
...  

Abstract BACKGROUND Clinical trials have established subthalamic deep-brain-stimulation (STN-DBS) as a highly effective treatment for motor symptoms of Parkinson disease (PD), but in clinical practice outcomes are variable. Experienced centers are confronted with an increasing number of patients with partially “failed” STN-DBS, in whom motor benefit doesn’t meet expectations. These patients require a complex multidisciplinary and standardized workup to identify the likely cause. OBJECTIVE To describe outcomes in a series of PD patients undergoing lead revision for suboptimal motor benefit after STN-DBS surgery and characterize selection criteria for surgical revision. METHODS We investigated 9 PD patients with STN-DBS, who had unsatisfactory outcomes despite intensive neurological management. Surgical revision was considered if the ratio of DBS vs levodopa-induced improvement of UPDRS-III (DBS-rr) was below 75% and the electrodes were found outside the dorsolateral STN. RESULTS Fifteen electrodes were replaced via stereotactic revision surgery into the dorsolateral STN without any adverse effects. Median displacement distance was 4.1 mm (range 1.6-8.42 mm). Motor symptoms significantly improved (38.2 ± 6.6 to 15.5 ± 7.9 points, P < .001); DBS-rr increased from 64% to 190%. CONCLUSION Patients with persistent OFFmotor symptoms after STN-DBS should be screened for levodopa-responsiveness, which can serve as a benchmark for best achievable motor benefit. Even small horizontal deviations of the lead from the optimal position within the dorsolateral STN can cause stimulation responses, which are markedly inferior to the levodopa response. Patients with an image confirmed lead displacement and preserved levodopa response are candidates for lead revision and can expect significant motor improvement from appropriate lead replacement.


2019 ◽  
Vol 23 (02) ◽  
pp. 203-208 ◽  
Author(s):  
Aline Juliane Romann ◽  
Bárbara Costa Beber ◽  
Carla Aparecida Cielo ◽  
Carlos Roberto de Mello Rieder

Introduction Subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function in individuals with Parkinson disease (PD). The evidence about the effects of STN-DBS on the voice is still inconclusive. Objective To verify the effect of STN-DBS on the voice of Brazilian individuals with PD. Methods Sixteen participants were evaluated on the Unified Parkinson Disease Rating Scale—Part III, and by the measurement of the acoustic modifications in on and off conditions of stimulation. Results The motor symptoms showed significant improvement with STN-DBS on. Regarding the acoustic measures of the voice, only the maximum fundamental frequency (fhi) showed a statistical difference between on- and off-conditions, with reduction in off-condition. Conclusion Changes in computerized acoustic measures are more valuable when interpreted in conjunction with changes in other measures. The single finding in fhi suggests that DBS-STN increases vocal instability. The interpretation of this result should be done carefully, since it may not be of great value if other measures that also indicate instability are not significantly different.


Neurology ◽  
2019 ◽  
Vol 92 (10) ◽  
pp. e1109-e1120 ◽  
Author(s):  
W.M. Michael Schuepbach ◽  
Lisa Tonder ◽  
Alfons Schnitzler ◽  
Paul Krack ◽  
Joern Rau ◽  
...  

ObjectiveTo investigate predictors for improvement of disease-specific quality of life (QOL) after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson disease (PD) with early motor complications.MethodsWe performed a secondary analysis of data from the previously published EARLYSTIM study, a prospective randomized trial comparing STN-DBS (n = 124) to best medical treatment (n = 127) after 2 years follow-up with disease-specific QOL (39-item Parkinson's Disease Questionnaire summary index [PDQ-39-SI]) as the primary endpoint. Linear regression analyses of the baseline characteristics age, disease duration, duration of motor complications, and disease severity measured at baseline with the Unified Parkinson’s Disease Rating Scale (UPDRS) (UPDRS-III “off” and “on” medications, UPDRS-IV) were conducted to determine predictors of change in PDQ-39-SI.ResultsPDQ-39-SI at baseline was correlated to the change in PDQ-39-SI after 24 months in both treatment groups (p < 0.05). The higher the baseline score (worse QOL) the larger the improvement in QOL after 24 months. No correlation was found for any of the other baseline characteristics analyzed in either treatment group.ConclusionImpaired QOL as subjectively evaluated by the patient is the most important predictor of benefit in patients with PD and early motor complications, fulfilling objective gold standard inclusion criteria for STN-DBS. Our results prompt systematically including evaluation of disease-specific QOL when selecting patients with PD for STN-DBS.Clinicaltrials.gov identifierNCT00354133.


2020 ◽  
Vol 19 (3) ◽  
pp. 234-240
Author(s):  
Kyle T Mitchell ◽  
John R Younce ◽  
Scott A Norris ◽  
Samer D Tabbal ◽  
Joshua L Dowling ◽  
...  

Abstract BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients &gt;75 yr old, 52 patients &lt;75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.


Sign in / Sign up

Export Citation Format

Share Document