Comparing Central Venous Blood Gas to Arterial Blood Gas and Determining Its Utility in Critically Ill Patients: Narrative Review

Author(s):  
Woon H. Chong ◽  
Biplab K. Saha ◽  
Boris I. Medarov
2016 ◽  
Vol 33 (3) ◽  
pp. 176-181 ◽  
Author(s):  
Eli Zeserson ◽  
Ben Goodgame ◽  
J. Daniel Hess ◽  
Kristine Schultz ◽  
Cynthia Hoon ◽  
...  

Rationale: Blood gas analysis is often used to assess acid–base, ventilation, and oxygenation status in critically ill patients. Although arterial blood gas (ABG) analysis remains the gold standard, venous blood gas (VBG) analysis has been shown to correlate with ABG analysis and has been proposed as a safer less invasive alternative to ABG analysis. Objective: The purpose of this study was to evaluate the correlation of VBG analysis plus pulse oximetry (SpO2) with ABG analysis. Methods: We performed a prospective cohort study of patients in the emergency department (ED) and intensive care unit (ICU) at a single academic tertiary referral center. Patients were eligible for enrollment if the treating physician ordered an ABG. Statistical analysis of VBG, SpO2, and ABG data was done using paired t test, Pearson χ2, and Pearson correlation. Main Results: There were 156 patients enrolled, and 129 patients completed the study. Of the patients completing the study, 53 (41.1%) were in the ED, 41 (31.8%) were in the medical ICU, and 35 (27.1%) were in the surgical ICU. The mean difference for pH between VBG and ABG was 0.03 (95% confidence interval: 0.03-0.04) with a Pearson correlation of 0.94. The mean difference for pCO2 between VBG and ABG was 4.8 mm Hg (95% confidence interval: 3.7-6.0 mm Hg) with a Pearson correlation of 0.93. The SpO2 correlated well with PaO2 (the partial pressure of oxygen in arterial blood) as predicted by the standard oxygen–hemoglobin dissociation curve. Conclusion: In this population of undifferentiated critically ill patients, pH and pCO2 on VBG analysis correlated with pH and pCO2 on ABG analysis. The SpO2 correlated well with pO2 on ABG analysis. The combination of VBG analysis plus SpO2 provided accurate information on acid–base, ventilation, and oxygenation status for undifferentiated critically ill patients in the ED and ICU.


2021 ◽  
pp. 1-3
Author(s):  
Sritam Mohanty ◽  
Rangaraj Setlur ◽  
Jyoti Kumar Sinha

Introduction: Arterial blood gas (ABG) analysis is the gold standard method and frequently performed intervention to evaluate acid-base status along with adequacy of ventilation and oxygenation among patients with predominantly critical / acute diseases. Aims And Objectives: The aim of this study is to evaluate the correlation of VBG analysis and pulse oximetry (SpO2) with ABG analysis in critically ill patients. Materials And Methods:Intensive Care Unit (ICU), Command Hospital (Eastern Command), Kolkata, Adult patients requiring arterial blood gas analysis, JAN 2018 –JUNE 2019, 100 critically ill patients and Age – 18yrs and older, Sex – Either sex. Conclusion: In this study population of critically ill patients, pH and pCO2 on VBG analysis correlated with pH and pCO2 on ABG analysis. The SpO2 correlated well with pO2 on ABG analysis


Author(s):  
Kirsty L. Ress ◽  
Gus Koerbin ◽  
Ling Li ◽  
Douglas Chesher ◽  
Phillip Bwititi ◽  
...  

AbstractObjectivesVenous blood gas (VBG) analysis is becoming a popular alternative to arterial blood gas (ABG) analysis due to reduced risk of complications at phlebotomy and ease of draw. In lack of published data, this study aimed to establish reference intervals (RI) for correct interpretation of VBG results.MethodsOne hundred and 51 adult volunteers (101 females, 50 males 18–70 y), were enrolled after completion of a health questionnaire. Venous blood was drawn into safePICO syringes and analysed on ABL827 blood gas analyser (Radiometer Pacific Pty. Ltd.). A non-parametric approach was used to directly establish the VBG RI which was compared to a calculated VBG RI based on a meta-analysis of differences between ABG and VBGResultsAfter exclusions, 134 results were used to derive VBG RI: pH 7.30–7.43, partial pressure of carbon dioxide (pCO2) 38–58 mmHg, partial pressure of oxygen (pO2) 19–65 mmHg, bicarbonate (HCO3−) 22–30 mmol/L, sodium 135–143 mmol/L, potassium 3.6–4.5 mmol/L, chloride 101–110 mmol/L, ionised calcium 1.14–1.29 mmol/L, lactate 0.4–2.2 mmol/L, base excess (BE) −1.9–4.5 mmol/L, saturated oxygen (sO2) 23–93%, carboxyhaemoglobin 0.4–1.4% and methaemoglobin 0.3–0.9%. The meta-analysis revealed differences between ABG and VBG for pH, HCO3−, pCO2 and pO2 of 0.032, −1.0 mmol/L, −4.2 and 39.9 mmHg, respectively. Using this data along with established ABG RI, calculated VBG RI of pH 7.32–7.42, HCO3− 23 – 27 mmol/L, pCO2 36–49 mmHg (Female), pCO2 39–52 mmHg (Male) and pO2 43–68 mmHg were formulated and compared to the VBG RI of this study.ConclusionsAn adult reference interval has been established to assist interpretation of VBG results.


Sign in / Sign up

Export Citation Format

Share Document