scholarly journals A phase transition regarding the evolution of bootstrap processes in inhomogeneous random graphs

2018 ◽  
Vol 28 (2) ◽  
pp. 990-1051
Author(s):  
Nikolaos Fountoulakis ◽  
Mihyun Kang ◽  
Christoph Koch ◽  
Tamás Makai
2017 ◽  
Vol 54 (4) ◽  
pp. 1278-1294 ◽  
Author(s):  
Fioralba Ajazi ◽  
George M. Napolitano ◽  
Tatyana Turova

Abstract In this paper we consider random distance graphs motivated by applications in neurobiology. These models can be viewed as examples of inhomogeneous random graphs, notably outside of the so-called rank-1 case. Treating these models in the context of the general theory of inhomogeneous graphs helps us to derive the asymptotics for the size of the largest connected component. In particular, we show that certain random distance graphs behave exactly as the classical Erdős–Rényi model, not only in the supercritical phase (as already known) but in the subcritical case as well.


2007 ◽  
Vol 31 (1) ◽  
pp. 3-122 ◽  
Author(s):  
Béla Bollobás ◽  
Svante Janson ◽  
Oliver Riordan

2004 ◽  
Vol 36 (03) ◽  
pp. 824-838 ◽  
Author(s):  
B. M. Hambly ◽  
Jonathan Jordan

We consider a sequence of random graphs constructed by a hierarchical procedure. The construction replaces existing edges by pairs of edges in series or parallel with probability p. We investigate the effective resistance across the graphs, first-passage percolation on the graphs and the Cheeger constants of the graphs as the number of edges tends to infinity. In each case we find a phase transition at


10.37236/8846 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Mark Jerrum ◽  
Tamás Makai

We study the joint components in a random 'double graph' that is obtained by superposing red and blue binomial random graphs on $n$~vertices.  A joint component is a maximal set of vertices that supports both a red and a blue spanning tree.  We show that there are critical pairs of red and blue edge densities at which a giant joint component appears.  In contrast to the standard binomial graph model, the phase transition is first order:  the size of the largest joint component jumps from $O(1)$ vertices to $\Theta(n)$ at the critical point.  We connect this phenomenon to the properties of a certain bicoloured branching process. 


2020 ◽  
Vol 10 (4) ◽  
pp. 310-334
Author(s):  
Gianmarco Bet ◽  
Remco van der Hofstad ◽  
Johan S. H. van Leeuwaarden

We consider a queue to which only a finite pool of n customers can arrive, at times depending on their service requirement. A customer with stochastic service requirement S arrives to the queue after an exponentially distributed time with mean S-α for some [Formula: see text]; therefore, larger service requirements trigger customers to join earlier. This finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-called [Formula: see text] queue and α = 1 is closely related to the exploration process for inhomogeneous random graphs. We consider the asymptotic regime in which the pool size n grows to infinity and establish that the scaled queue-length process converges to a diffusion process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of activity. We also describe how this first busy period of the queue gives rise to a critically connected random forest.


2015 ◽  
Vol 184 ◽  
pp. 130-138 ◽  
Author(s):  
Tobias Friedrich ◽  
Anton Krohmer

2010 ◽  
Vol 20 (1) ◽  
pp. 131-154 ◽  
Author(s):  
TATYANA S. TUROVA

We study the ‘rank 1 case’ of the inhomogeneous random graph model. In the subcritical case we derive an exact formula for the asymptotic size of the largest connected component scaled to log n. This result complements the corresponding known result in the supercritical case. We provide some examples of applications of the derived formula.


2010 ◽  
Vol 39 (3) ◽  
pp. 399-411 ◽  
Author(s):  
Svante Janson ◽  
Oliver Riordan

Sign in / Sign up

Export Citation Format

Share Document