scholarly journals Big Jobs Arrive Early: From Critical Queues to Random Graphs

2020 ◽  
Vol 10 (4) ◽  
pp. 310-334
Author(s):  
Gianmarco Bet ◽  
Remco van der Hofstad ◽  
Johan S. H. van Leeuwaarden

We consider a queue to which only a finite pool of n customers can arrive, at times depending on their service requirement. A customer with stochastic service requirement S arrives to the queue after an exponentially distributed time with mean S-α for some [Formula: see text]; therefore, larger service requirements trigger customers to join earlier. This finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-called [Formula: see text] queue and α = 1 is closely related to the exploration process for inhomogeneous random graphs. We consider the asymptotic regime in which the pool size n grows to infinity and establish that the scaled queue-length process converges to a diffusion process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of activity. We also describe how this first busy period of the queue gives rise to a critically connected random forest.

2017 ◽  
Vol 54 (3) ◽  
pp. 921-942
Author(s):  
Gianmarco Bet ◽  
Remco van der Hofstad ◽  
Johan S. H. van Leeuwaarden

AbstractWe consider the Δ(i)/G/1 queue, in which a total ofncustomers join a single-server queue for service. Customers join the queue independently after exponential times. We considerheavy-tailedservice-time distributions with tails decaying asx-α, α ∈ (1, 2). We consider the asymptotic regime in which the population size grows to ∞ and establish that the scaled queue-length process converges to an α-stable process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of uninterrupted activity (a busy period). The heavy-tailed service times should be contrasted with the case of light-tailed service times, for which a similar scaling limit arises (Betet al.(2015)), but then with a Brownian motion instead of an α-stable process.


1973 ◽  
Vol 5 (1) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


1969 ◽  
Vol 6 (1) ◽  
pp. 154-161 ◽  
Author(s):  
E.G. Enns

In the study of the busy period for a single server queueing system, three variables that have been investigated individually or at most in pairs are:1.The duration of the busy period.2.The number of customers served during the busy period.3.The maximum number of customers in the queue during the busy period.


1971 ◽  
Vol 8 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Sreekantan S. Nair

Avi-Itzhak, Maxwell and Miller (1965) studied a queueing model with a single server serving two service units with alternating priority. Their model explored the possibility of having the alternating priority model treated in this paper with a single server serving alternately between two service units in tandem.Here we study the distribution of busy period, virtual waiting time and queue length and their limiting behavior.


1973 ◽  
Vol 5 (01) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


2015 ◽  
Vol 184 ◽  
pp. 130-138 ◽  
Author(s):  
Tobias Friedrich ◽  
Anton Krohmer

2010 ◽  
Vol 20 (1) ◽  
pp. 131-154 ◽  
Author(s):  
TATYANA S. TUROVA

We study the ‘rank 1 case’ of the inhomogeneous random graph model. In the subcritical case we derive an exact formula for the asymptotic size of the largest connected component scaled to log n. This result complements the corresponding known result in the supercritical case. We provide some examples of applications of the derived formula.


2010 ◽  
Vol 39 (3) ◽  
pp. 399-411 ◽  
Author(s):  
Svante Janson ◽  
Oliver Riordan

Sign in / Sign up

Export Citation Format

Share Document