scholarly journals Finite-memory elephant random walk and the central limit theorem for additive functionals

2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Iddo Ben-Ari ◽  
Jonah Green ◽  
Taylor Meredith ◽  
Hugo Panzo ◽  
Xioran Tan
1978 ◽  
Vol 10 (04) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U (∊) n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M ∊ = max {U (∊) n , n ≧ 0}, v 0 = min {n : U (∊) n = M ∊}, v 1 = max {n : U (∊) n = M ∊}. The joint limiting distribution of ∊2σ∊ –2 v 0 and ∊σ∊ –2 M ∊ is determined. It is the same as for ∊2σ∊ –2 v 1 and ∊σ–2 ∊ M ∊. The marginal ∊σ–2 ∊ M ∊ gives Kingman's heavy traffic theorem. Also lim ∊–1 P(M ∊ = 0) and lim ∊–1 P(M ∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U (∊) n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


1978 ◽  
Vol 10 (4) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U(∊)n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M∊ = max {U(∊)n, n ≧ 0}, v0 = min {n : U(∊)n = M∊}, v1 = max {n : U(∊)n = M∊}. The joint limiting distribution of ∊2σ∊–2v0 and ∊σ∊–2M∊ is determined. It is the same as for ∊2σ∊–2v1 and ∊σ–2∊M∊. The marginal ∊σ–2∊M∊ gives Kingman's heavy traffic theorem. Also lim ∊–1P(M∊ = 0) and lim ∊–1P(M∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U(∊)n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


1971 ◽  
Vol 5 (2) ◽  
pp. 145-155 ◽  
Author(s):  
C.C. Heyde ◽  
J.R. Leslie

It has recently emerged that the central limit theorem and iterated logarithm law for random walk processes have natural counterparts for Galton-Watson processes with or without immigration. Much of the work on these counterparts has previously involved the imposition of supplementary moment conditions. In this paper we show how to dispense with these supplementary conditions and in so doing make the analogy with the random walk results complete.


Sign in / Sign up

Export Citation Format

Share Document